Math, asked by Vamprixussa, 11 months ago

║⊕QUESTION⊕║
Why do children dread mathematics? Because of the wrong approach. Because it is looked at as a subject.

CLASS 11
PRINCIPLE OF MATHEMATICAL INDUCTION

Using the Principle of Mathematical Induction, prove that
cos\alpha cos2\alpha cos4\alpha ....cos(2^{n-1}\alpha  ) = \frac{sin 2^{n}\alpha  }{2^{n}sin\alpha  } for all n belongs to N

Answers

Answered by Anonymous
26

Question

Using Principle of Mathematical Induction,prove that

cos\alpha cos2\alpha cos4\alpha ....cos(2^{n-1}\alpha ) = \frac{sin 2^{n}\alpha }{2^{n}sin\alpha } for all n belongs to N

Solution

Let us assume that P(n) is the given statement and is true for all natural numbers

When n = 1,

LHS :

\longrightarrow \: \sf{ \cos( \alpha ) }

RHS :

 \sf{ \dfrac{ \sin(2 \alpha ) }{2 \sin( \alpha ) } } \\  \\  \longrightarrow \:  \sf{ \dfrac{2 \sin( \alpha ) \cos( \alpha )  }{2 \sin( \alpha ) } } \\  \\  \longrightarrow \:  \sf{ \cos( \alpha ) }

Thus,P(1) is true

Now,

Let us suppose P(K) is true for all natural numbers,where K is a natural number.

Thus,

 \sf{cos\alpha.cos2\alpha .cos4\alpha ....cos(2^{k-1}\alpha ) = \dfrac{sin {2} {}^{k} \alpha }{2^{k}sin\alpha  } -  -  -  -  -  - (1)}

To Prove :

P(K + 1) is true

 \sf{cos\alpha. cos2\alpha. cos4\alpha ....cos(2^{k}\alpha ) = \dfrac{sin 2^{k + 1}\alpha }{2^{k + 1}sin\alpha }}

LHS

 \sf{cos\alpha. cos2\alpha. cos4\alpha ....cos(2^{k}\alpha ) } \\  \\  \longrightarrow \:  \sf{cos\alpha. cos2\alpha. cos4\alpha ... \cos( {2}^{k - 1  }  \alpha ) .cos(2^{k}\alpha )}

From Equation (1),we write :

 \sf{\dfrac{ \sin( {2}^{k} ) \alpha  }{ {2}^{k}  \sin( \alpha )  } \times  \cos( {2}^{k} ) \alpha}   \\  \\  \longrightarrow \:  \sf{\dfrac{sin 2^{k + 1}\alpha }{2^{k + 1}sin\alpha }}

Thus,LHS = RHS

Hence,P(K + 1) is true whenever P(K) is true

By Principle Of Mathematical Induction,

P(n) is true for all natural numbers

Answered by dorgan399
4

Step-by-step explanation:

Hello mate

Here is ur answer in the attachment

plz mark it brainliest

hope it helps

Attachments:
Similar questions