"Question10
Evaluate, cos45° cos30° + sin45° sin30°
Chapter6, Trigonometry, Exercise -6 ,Page number 288"
Answers
Answered by
7
HELLO DEAR,
we know that:-
cosAcosB + sinAsinB = cos(A - B)
NOW,
cos45° cos30° + sin45° sin30°
=> cos(45° - 30°)
=> cos15° = (√3 + 1)/2√2
another method,
cos45° = 1/√2 = sin45°
cos30° = √3/2 , sin30° = 1/2
NOW,
1/√2 * √3/2 + 1/√2 * 1/2
=> √3/2√2 + 1/2√2
=> (√3 + 1)/2√2
I HOPE ITS HELP DEAR,
THANKS
we know that:-
cosAcosB + sinAsinB = cos(A - B)
NOW,
cos45° cos30° + sin45° sin30°
=> cos(45° - 30°)
=> cos15° = (√3 + 1)/2√2
another method,
cos45° = 1/√2 = sin45°
cos30° = √3/2 , sin30° = 1/2
NOW,
1/√2 * √3/2 + 1/√2 * 1/2
=> √3/2√2 + 1/2√2
=> (√3 + 1)/2√2
I HOPE ITS HELP DEAR,
THANKS
Answered by
1
Hey there!
We know that , cos( A - B ) = cosA cos B + sinA sinB.
So, cos45° cos30° + sin45° sin30° is in the form of cosA cos B + sinA sinB. .
Now,
cos45° cos30° + sin45° sin30°
= cos ( 45 - 30 )
= cos 15
We know that, cos15° = √3+1/2√2
= √3 + 1 / 2√2
[ or ]
We know trigonometric ratios of special angles : cos45 = sin45 = 1/√2 , cos30 = √3/2 , sin30 = 1/2
= cos45° cos30° + sin45° sin30°
= 1/√2 ( √3/2 ) + (1/2 ) ( 1/√2 )
= √3/2√2 + 1/2√2
= √3 + 1 / 2√2
Therefore , cos45° cos30° + sin45° sin30° = √3+1/2√2
Hope helped!
We know that , cos( A - B ) = cosA cos B + sinA sinB.
So, cos45° cos30° + sin45° sin30° is in the form of cosA cos B + sinA sinB. .
Now,
cos45° cos30° + sin45° sin30°
= cos ( 45 - 30 )
= cos 15
We know that, cos15° = √3+1/2√2
= √3 + 1 / 2√2
[ or ]
We know trigonometric ratios of special angles : cos45 = sin45 = 1/√2 , cos30 = √3/2 , sin30 = 1/2
= cos45° cos30° + sin45° sin30°
= 1/√2 ( √3/2 ) + (1/2 ) ( 1/√2 )
= √3/2√2 + 1/2√2
= √3 + 1 / 2√2
Therefore , cos45° cos30° + sin45° sin30° = √3+1/2√2
Hope helped!
Similar questions
English,
8 months ago
Biology,
8 months ago
India Languages,
8 months ago
English,
1 year ago
Social Sciences,
1 year ago