"Question13
Evaluate, (sin²30°+ 4cot²45° - sec²60°) (Cosec²45°sec²30°)
Chapter6, Trigonometry, Exercise -6 ,Page number 288"
Answers
Answered by
15
Hey there!
We know that,
sin30 = 1/2
cot45 = 1
sec60 = 2
cosec45 = √2
sec30 = 2/√3
⇒ (sin²30°+ 4cot²45° - sec²60) (Cosec²45° sec²30°)
⇒ [ (1/2)² + 4(1)² - 2² ] [ (√2)² * (2/√3)² ]
⇒ [ 1/4 + 4 - 4 ] [ 2 * 4/3 ]
⇒ [ 1/4 ] [ 8/3 ]
⇒ 2/3
Therefore, (sin²30°+ 4cot²45° - sec²60°) (Cosec²45°sec²30°) = 2/3
We know that,
sin30 = 1/2
cot45 = 1
sec60 = 2
cosec45 = √2
sec30 = 2/√3
⇒ (sin²30°+ 4cot²45° - sec²60) (Cosec²45° sec²30°)
⇒ [ (1/2)² + 4(1)² - 2² ] [ (√2)² * (2/√3)² ]
⇒ [ 1/4 + 4 - 4 ] [ 2 * 4/3 ]
⇒ [ 1/4 ] [ 8/3 ]
⇒ 2/3
Therefore, (sin²30°+ 4cot²45° - sec²60°) (Cosec²45°sec²30°) = 2/3
Answered by
20
HELLO DEAR,
WE KNOW THAT:-
sin30° = 1/2,cosec45° = √2
cot45° = 1 , sec60° = 2
sec30° = 2/√3
=> (sin²30°+ 4cot²45° - sec²60) (Cosec²45° sec²30°)
=> [ (1/2)² + 4(1)² - 2² ] × [ (√2)² × (2/√3)² ]
=> ( 1/4 + 4 - 4 ) × ( 2 * 4/3 )
=> ( 1/4 ) × ( 8/3 )
=> 2/3
I HOPE ITS HELP YOU DEAR,
THANKS
WE KNOW THAT:-
sin30° = 1/2,cosec45° = √2
cot45° = 1 , sec60° = 2
sec30° = 2/√3
=> (sin²30°+ 4cot²45° - sec²60) (Cosec²45° sec²30°)
=> [ (1/2)² + 4(1)² - 2² ] × [ (√2)² × (2/√3)² ]
=> ( 1/4 + 4 - 4 ) × ( 2 * 4/3 )
=> ( 1/4 ) × ( 8/3 )
=> 2/3
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions