Question2:Write down an algorithm to multiply three numbers.
Answers
Answer:
Step-by-step explanation:
Grid method
Main article: Grid method multiplication
The grid method (or box method) is an introductory method for multiple-digit multiplication that is often taught to pupils at primary school or elementary school. It has been a standard part of the national primary school mathematics curriculum in England and Wales since the late 1990s.[1]
Both factors are broken up ("partitioned") into their hundreds, tens and units parts, and the products of the parts are then calculated explicitly in a relatively simple multiplication-only stage, before these contributions are then totalled to give the final answer in a separate addition stage.
The calculation 34 × 13, for example, could be computed using the grid:
300
40
90
+ 12
————
442
× 30 4
10 300 40
3 90 12
followed by addition to obtain 442, either in a single sum (see right), or through forming the row-by-row totals (300 + 40) + (90 + 12) = 340 + 102 = 442.
This calculation approach (though not necessarily with the explicit grid arrangement) is also known as the partial products algorithm. Its essence is the calculation of the simple multiplications separately, with all addition being left to the final gathering-up stage.
The grid method can in principle be applied to factors of any size, although the number of sub-products becomes cumbersome as the number of digits increases. Nevertheless, it is seen as a usefully explicit method to introduce the idea of multiple-digit multiplications; and, in an age when most multiplication calculations are done using a calculator or a spreadsheet, it may in practice be the only multiplication algorithm that some students will ever need