"Question23
If A = 45° , verify that : sin 2A = 2 sin A cos A
Chapter6,T-Ratios of particular angles Exercise -6 ,Page number 289"
Answers
Answered by
90
Hey!
Given :; A = 45°
LHS = Sin2A
Sin2 × 45
= Sin90°
= 1
RHS :- 2SinA CosA
2 × Sin45° × Cos45°
= 2 × 1/√2 × 1/√2
( √2 × √2 = 2 will cancel 2 )
= 1
LHS = RHS
Hence , Verified !!
Given :; A = 45°
LHS = Sin2A
Sin2 × 45
= Sin90°
= 1
RHS :- 2SinA CosA
2 × Sin45° × Cos45°
= 2 × 1/√2 × 1/√2
( √2 × √2 = 2 will cancel 2 )
= 1
LHS = RHS
Hence , Verified !!
Answered by
43
Hey there!
Given to verify : sin 2A = 2 sin A cos A
If A = 45°
sin2A = sin(2*45) = sin90 = 1 [ T - Ratio of 90° , π/2 ]
sinA = sin45 = 1/√2 [ T - Ratio of 45° , π/4 ]
cosA = cos45 = 1/√2 [ T - Ratio of 45° , π/4 ]
Now,
Given equation to verify : sin 2A = 2 sin A cos A
Finding the value of Left Hand Side ( L. H. S)
= sin2A
= sin90
= 1
Finding the value of Right Hand side [ R. H. S ]
= 2 sinA * cosA
= 2 ( 1/√2)(1/√2)
= √2/√2
= 1 .
Here, We observe that L. H. S = R. H. S.
Hence proved that, sin2A = 2sinA cosA for A = 45°
Given to verify : sin 2A = 2 sin A cos A
If A = 45°
sin2A = sin(2*45) = sin90 = 1 [ T - Ratio of 90° , π/2 ]
sinA = sin45 = 1/√2 [ T - Ratio of 45° , π/4 ]
cosA = cos45 = 1/√2 [ T - Ratio of 45° , π/4 ]
Now,
Given equation to verify : sin 2A = 2 sin A cos A
Finding the value of Left Hand Side ( L. H. S)
= sin2A
= sin90
= 1
Finding the value of Right Hand side [ R. H. S ]
= 2 sinA * cosA
= 2 ( 1/√2)(1/√2)
= √2/√2
= 1 .
Here, We observe that L. H. S = R. H. S.
Hence proved that, sin2A = 2sinA cosA for A = 45°
Similar questions