"Question24
If A = 45° , verify that : cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A
Chapter6,T-Ratios of particular angles Exercise -6 ,Page number 289"
Answers
Answered by
2
Hey there!
Given to verify : cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A
If A = 45°
1) cos 2A = cos (2*45) = cos90 = 0 [ T - Ratio of 90° , π/2 ]
2) sinA = sin45 = 1/√2 [ T - Ratio of 45° , π/4 ]
3)cosA = cos45 = 1/√2 [ T - Ratio of 45° , π/4 ]
Now,
Given equation to verify : cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A
From this, cos2A = 2cos²A - 1 , cos2A = 1 -2 sin²A.
==================================
Finding the value of cos2A,
= cos ( 2A )
= cos90
= 0
==================================
Finding the value of 2cos²A - 1
= 2 cos²45 - 1
= 2 ( 1/√2)² - 1
= 2 ( 1/2) - 1
= 1 - 1
= 0
==================================
Finding the value of 1 - 2sin²A
= 1 - 2sin²45
= 1 - 2 ( 1/√2)²
= 1 - 2/2
= 1 - 1
= 0
==================================
Here, We observe that cos2A = 1 - 2sin²A = 2cos²A - 1
Hence proved that, cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A for A = 45°
Given to verify : cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A
If A = 45°
1) cos 2A = cos (2*45) = cos90 = 0 [ T - Ratio of 90° , π/2 ]
2) sinA = sin45 = 1/√2 [ T - Ratio of 45° , π/4 ]
3)cosA = cos45 = 1/√2 [ T - Ratio of 45° , π/4 ]
Now,
Given equation to verify : cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A
From this, cos2A = 2cos²A - 1 , cos2A = 1 -2 sin²A.
==================================
Finding the value of cos2A,
= cos ( 2A )
= cos90
= 0
==================================
Finding the value of 2cos²A - 1
= 2 cos²45 - 1
= 2 ( 1/√2)² - 1
= 2 ( 1/2) - 1
= 1 - 1
= 0
==================================
Finding the value of 1 - 2sin²A
= 1 - 2sin²45
= 1 - 2 ( 1/√2)²
= 1 - 2/2
= 1 - 1
= 0
==================================
Here, We observe that cos2A = 1 - 2sin²A = 2cos²A - 1
Hence proved that, cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A for A = 45°
Answered by
12
HELLO DEAR,
GIVEN THAT:-
A = 45°
NOW,
GIVEN Equation is,
cos2A = 2cos²A - 1 = 1 - 2sin²A
NOW substitute the values of "A"
we get,
cos(2 * 45°) = cos90°
cos90° = 0-------(1),
2cos²A - 1 = 2cos²45° - 1
= 2 * (1/√2)² - 1
= 2 * 1/2 - 1 = 0------(2)
1 - 2sin²A
= 1 - 2*sin²45°
= 1 - 2*(1/√2)²
= 1 - 1 = 0-----(3)
from---(1) , ---(2) & ---(3)
we get,
cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN THAT:-
A = 45°
NOW,
GIVEN Equation is,
cos2A = 2cos²A - 1 = 1 - 2sin²A
NOW substitute the values of "A"
we get,
cos(2 * 45°) = cos90°
cos90° = 0-------(1),
2cos²A - 1 = 2cos²45° - 1
= 2 * (1/√2)² - 1
= 2 * 1/2 - 1 = 0------(2)
1 - 2sin²A
= 1 - 2*sin²45°
= 1 - 2*(1/√2)²
= 1 - 1 = 0-----(3)
from---(1) , ---(2) & ---(3)
we get,
cos 2 A = 2 cos²A - 1 = 1 - 2 sin²A
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions