"Question39
If sin A = 60° and B= 30°, verify that : tan (A-B) = tanA-tanB / 1+ tan A tan B
Chapter6,T-Ratios of particular angles Exercise -6 ,Page number 289"
Answers
Answered by
56
Hey there! Thanks for the question!
Given,
A = 60° , B = 30°
To verify : tan(A - B) = tanA-tanB / 1 + tanA tanB.
Now,
tan( 60 - 30 ) = tan60 - tan30 / 1 + tan60° tan30°
We know that, tan30 = 1/√3 , tan60 = √3
tan30° = ( √3) - ( 1/√3) / 1 + ( √3) ( 1/√3)
1/√3 = ( 3 - 1 / √3 ) / 2
1/√3 = 2/√3 / ( 2 )
1/√3 = 1/√3
Both sides of the equation are equal!
Therefore, We proved and verified tan (A-B) = tanA-tanB / 1+ tan A tan B , for A = 60° , B = 30°
Given,
A = 60° , B = 30°
To verify : tan(A - B) = tanA-tanB / 1 + tanA tanB.
Now,
tan( 60 - 30 ) = tan60 - tan30 / 1 + tan60° tan30°
We know that, tan30 = 1/√3 , tan60 = √3
tan30° = ( √3) - ( 1/√3) / 1 + ( √3) ( 1/√3)
1/√3 = ( 3 - 1 / √3 ) / 2
1/√3 = 2/√3 / ( 2 )
1/√3 = 1/√3
Both sides of the equation are equal!
Therefore, We proved and verified tan (A-B) = tanA-tanB / 1+ tan A tan B , for A = 60° , B = 30°
Answered by
31
Hey mate !!
Here's the answer !!
Given :
A = 60°
B = 30°
To verify :
Tan ( A - B ) = Tan A - Tan B / 1 + Tan A . Tan B
Proof :
Lets substitute the values of A and B in the equation to be verified.
= Tan ( 60 - 30 ) = Tan 60 - Tan 30 / 1 + Tan 60 . Tan 30
= Tan ( 30 ) = ( Tan 60 - Tan 30 ) / 1 + Tan 60 . Tan 30 -----( Eqn. 1 )
We know that,
Tan 30 = 1 / √ 3
Tan 60 = √ 3
Hence substitute the above formulas in equation 1. We get,
= ( 1 / √ 3 ) = ( √ 3 - 1 / √ 3 ) / 1 + √ 3 * 1 / √ 3
= ( 1 / √ 3 ) = ( 3 - 1 / √ 3 ) / 1 + 1
= ( 1 / √ 3 ) = 2 / √ 3 / 2
=> 1 / √ 3 = 2 / 2 √ 3
=> 1 / √ 3 = 1 / √ 3
Hence Verified !!
LHS = RHS !!
Hope my answer helps you mate !!
Cheers !!
Here's the answer !!
Given :
A = 60°
B = 30°
To verify :
Tan ( A - B ) = Tan A - Tan B / 1 + Tan A . Tan B
Proof :
Lets substitute the values of A and B in the equation to be verified.
= Tan ( 60 - 30 ) = Tan 60 - Tan 30 / 1 + Tan 60 . Tan 30
= Tan ( 30 ) = ( Tan 60 - Tan 30 ) / 1 + Tan 60 . Tan 30 -----( Eqn. 1 )
We know that,
Tan 30 = 1 / √ 3
Tan 60 = √ 3
Hence substitute the above formulas in equation 1. We get,
= ( 1 / √ 3 ) = ( √ 3 - 1 / √ 3 ) / 1 + √ 3 * 1 / √ 3
= ( 1 / √ 3 ) = ( 3 - 1 / √ 3 ) / 1 + 1
= ( 1 / √ 3 ) = 2 / √ 3 / 2
=> 1 / √ 3 = 2 / 2 √ 3
=> 1 / √ 3 = 1 / √ 3
Hence Verified !!
LHS = RHS !!
Hope my answer helps you mate !!
Cheers !!
Similar questions
Chapter6,T-Ratios of particular angles Exercise -6 ,Page number 289