"Question49
Prove the identity : sin² θ + 1 / (1+ tan² θ ) = 1
Chapter7,Trigonometric identities Exercise -7A , Page number 314"
Answers
Answered by
40
Solution :
1) To prove : “ sin² θ + 1 / (1+ tan² θ ) = 1 ”
2) Inference ( Understanding the question, Thinking of the method ) : We shall start from Left hand side ( L. H. S) and proceed till we get R. H. S. We will use trigonometric identities too.
3) Formulas we are going to use :
1/secθ = cosθ
tan²θ +1 = sec²θ
sin²θ + cos²θ = 1
4) Actual proof :
Firstly, We know that, tan²θ +1 = sec²θ
Therefore, We proved the identity sin² θ + 1 / (1+ tan² θ ) = 1
Hope it helps!
1) To prove : “ sin² θ + 1 / (1+ tan² θ ) = 1 ”
2) Inference ( Understanding the question, Thinking of the method ) : We shall start from Left hand side ( L. H. S) and proceed till we get R. H. S. We will use trigonometric identities too.
3) Formulas we are going to use :
1/secθ = cosθ
tan²θ +1 = sec²θ
sin²θ + cos²θ = 1
4) Actual proof :
Firstly, We know that, tan²θ +1 = sec²θ
Therefore, We proved the identity sin² θ + 1 / (1+ tan² θ ) = 1
Hope it helps!
Anonymous:
Good Explanation!
Answered by
17
Answer :-
______________________________
To prove :-
sin² θ + { 1 / ( 1 + tan² θ ) } = 1
Salutation :-
L.H.S = sin² θ + { 1 / ( 1 + tan² θ ) }
= sin² θ + { 1 / sec² θ }
[ • As we know , sec² θ - tan² = 1 , So sec² θ = 1 + tan² θ ]
= sin² θ + cos² θ
[ • We know , cos θ = 1 / sec θ , so 1 / sec² θ = cos² θ ]
= 1
[ • We know the value of sin² θ + cos² θ is 1 ]
And R.H.S = 1
So , L.H.S = R.H.S [ • Hence Proved ]
________________________________
______________________________
To prove :-
sin² θ + { 1 / ( 1 + tan² θ ) } = 1
Salutation :-
L.H.S = sin² θ + { 1 / ( 1 + tan² θ ) }
= sin² θ + { 1 / sec² θ }
[ • As we know , sec² θ - tan² = 1 , So sec² θ = 1 + tan² θ ]
= sin² θ + cos² θ
[ • We know , cos θ = 1 / sec θ , so 1 / sec² θ = cos² θ ]
= 1
[ • We know the value of sin² θ + cos² θ is 1 ]
And R.H.S = 1
So , L.H.S = R.H.S [ • Hence Proved ]
________________________________
Similar questions