Hindi, asked by BrainlyStar909, 3 months ago

Questions -_-
1]. A shopkeeper have one theracal Laddoo of radius 5 cm. with the same amount of material, how many laddoo of radius 2.5 cm can be made.

2].find the amount of water displaced by a solid spherical ball of a diameter 4.2 cm. when it is completely immersed in water.

3]. A sphere and a right circular cylinder of the same radius have equal volume. By what percentage does the diameter of the cylinder exceed it's height.​

Answers

Answered by SachinGupta01
11

Solution : 1

 \sf \: Radius \:  of  \: the \:  spherical \:  laddoo = 5 \:  cm

 \sf \: \therefore Volume  \: of  \: big  \: spherical \:  laddoo \: \implies \:  \sf \:  \dfrac{4}{3}  \pi \:  \times 5 \times 5 \times 5 cm ^{3}

\sf \: Radius  \: of  \: small \:  spherical  \: laddoo = 2.5 \:  cm

 \sf \: \therefore Volume  \: of  \: small  \: spherical \:  laddoo \: \implies \:  \sf \:  \dfrac{4}{3}  \pi \:  \times 2.5 \times 2.5 \times 2.5 cm ^{3}

 \sf \: \therefore Number \:  of \:  spherical \:  laddoo  \:  \sf \: \implies \:  \dfrac{\dfrac{4}{3}  \pi \:  \times 5 \times 5 \times 5}{\dfrac{4}{3}  \pi \:  \times 2.5 \times 2.5 \times 2.5  }  \:  =  \: 8

 \underline{ \boxed{  \pink{\sf \: Hence,  \: with \:  same \:  amount  \: of  \: material, 8 \:  laddoos  \: can \:  be  \: made. }}}

______________________________________

Solution : 2

 \sf \: Here, diameter  \: of \:  solid  \: spherical \:  ball = 4.2 \:  cm

 \sf \therefore  Radius \:  of \:  solid \:  spherical \:  ball =  \dfrac{4.2}{2}  = 2.1 \: cm

 \sf \: Volume \:  of  \: solid \:  spherical \:  ball =  \dfrac{4}{3}  \pi r^{3}

 \implies \:  \sf \:   \dfrac{4}{3} \times  \dfrac{22}{7}   \times 2.1 \times 2.1 \times 2.1

 \implies \:  \sf \:   38.808 \: cm ^{3}

 \underline{ \boxed{  \pink{\sf Answer = 38.808 \:  cm ^{3} }}}

______________________________________

Solution : 3

A sphere and a right circular cylinder have same radius and equal volume.

 \sf \: Volume \:  of  \: sphere = Volume  \: of \:  right  \: circular  \: cylinder

 \implies \:  \sf \:   \dfrac{4}{3}  \pi r^{3}  =  \pi r^{2} h

 \implies \:  \sf \:   \dfrac{4}{3}  r  = h

 \implies \:  \sf r =  \dfrac{3}{4} h

 \sf \: \therefore Diameter  \: of  \: cylinder = 2 \times r =  \dfrac{3}{2} h

 \sf \: Total \:  increase =  \bigg( \dfrac{3}{2}  - 1 \bigg)h =  \dfrac{1}{2} h

 \sf  \:  Increase\: \% =  \dfrac{\dfrac{1}{2} h}{h}  \times 100

 \sf \:  Increase\: \% =  50 \:  \%

 \boxed{ \pink{ \sf \: Hence,  \: diameter  \: of \:  cylinder \:  exceed  \: it's  \: height  \: by \:  50 \%}}

Similar questions