Math, asked by nithinroman1, 6 days ago

Questions 2 cos x + 3 sin x *(i) Evaluate dx 4 cos x + 5 sinx​

Answers

Answered by LaeeqAhmed
0

(swipe right to left to view full ans)

 \displaystyle \int  \frac{2 \cos x + 3 \sin  x}{4  \cos x + 5 \sin x}  \: dx

 \sf \purple{here }

  •  \sf numertor = 2 \cos x + 3 sin x
  •  \sf denominator =4 \cos x + 5  \sin x

 \sf numerator \: can \: be \: represented \: as \: follows

 \small{ \sf numerator = a( \frac{d}{dx} (4\cos x+5\sin x))+ b(4\cos x+5\sin x)}

  \small{  \implies\sf numerator = a(  -  4\sin x+5\cos x) + b(4\cos x+5\sin x)}

  \small{  \implies\sf numerator =  ( 5b-  4a)\sin x+(5a + 4b)\cos x \: ...(1)}

 \sf \purple{since}

 \sf numertor = 2 \cos x + 3 sin x

 \sf \purple{substituting \: in \: (1)}

  \small{  \implies\sf    2 \cos x + 3 sin x =  ( 5b-  4a)\sin x+(5a + 4b)\cos x}

 \sf \purple{comparing \: coefficients}

 \implies  \sf 5b - 4a = 3 \: ...(2)

 \implies  \sf 5a  + 4b= 2 \: ...(3)

 \sf \purple{solving \: (2) \:  and \: (3),we \: get}

 \sf a =   \frac{ - 2}{41}

 \sf b =  \frac{23}{41}

 \small{  \implies\displaystyle \int  \frac{ \frac{ - 2}{41} ( \frac{d}{dx} (4\cos x+5\sin x)) +  \frac{23}{41} (4\cos x+5\sin x)}{4  \cos x + 5 \sin x}  \: dx}

 \tiny{  \implies\displaystyle \frac{ - 2}{41}\int  \frac{  \frac{d}{dx}(4\cos x+5\sin x) }{4  \cos x + 5 \sin x} \: dx +  \frac{23}{41}  \int \frac{4\cos x+5\sin x}{4  \cos x + 5 \sin x}  \: dx}

 \tiny{  \implies\displaystyle \frac{ - 2}{41}  \log|4  \cos x + 5 \sin x|  +  \frac{23}{41}  \int   dx}

 \orange{ \small{  \therefore\displaystyle \frac{ - 2}{41}  \log|4  \cos x + 5 \sin x|  +  \frac{23}{41} x \:  +    c}}

HOPE IT HELPS!!

Similar questions