Math, asked by Anonymous, 3 months ago

Questions

A Ladder set against a wall makes an angle  θ with the horizontal. when it's foot is pulled away from the wall through a distance 'p', it slides a distance 'q' down the wall making an angle ϕ with the horizontal. Show that
 \sf  \dfrac{p}{q}  =  \dfrac{cos \theta - cos \phi}{sin \phi - sin \theta}

Class = 10
Chapter = Some Applications of Trigonometry​

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Let AC be the ladder such that it top A touches the wall AB and bottom C on the ground.

The ladder is pulled away from the wall through a distance 'p' , so that it top C slides and take position E on wall and D on ground.

So,

  • AC = DE = Length of Ladder.

Let

  • Length of Ladder be 'z'

  • Distance, BC = 'x'

  • Distance, BE = 'y'

Given that

  • Distance, DC = p

  • Distance, AE = q

Now,

\rm :\longmapsto\:In \:  \triangle  \: ABC

\rm :\longmapsto\: sin\theta \:  = \dfrac{AB}{AC}

\rm :\longmapsto\: sin\theta \:  =\dfrac{q + y}{z}  -  -  - (1)

and

\rm :\longmapsto\: cos\theta \:  =\dfrac{BC}{AB}

\rm :\longmapsto\: cos\theta \:  =\dfrac{x}{z}  -  -   -(2)

Now,

\rm :\longmapsto\:In \:  \triangle \:DBE

\rm :\longmapsto\:sin \phi \: = \dfrac{BE}{DE}

\rm :\longmapsto\:sin \phi \: = \dfrac{y}{z}  -  -  - (3)

and

\rm :\longmapsto\:cos \phi \: = \dfrac{DB}{DE}

\rm :\longmapsto\:cos \phi \: = \dfrac{p + x}{z} -  -  - (4)

Consider,

\rm :\longmapsto\:\dfrac{cos\theta \:  -  \: cos\phi}{sin\phi \:  -  \: sin\theta}

On substituting the values of sin ϕ, cos ϕ, sin θ, cos θ,

 \rm \:  \:  \:  =  \:  \: \dfrac{\dfrac{x}{z}  - \dfrac{p + x}{z} }{ \:  \:  \:  \: \dfrac{y}{z}  - \dfrac{q + y}{z} \:  \:  \:  \:  \:  \:  }

 \rm\:  \:  \:  =  \:  \: \dfrac{\dfrac{ \cancel{x} -  \cancel{x} - p}{\cancel{z}} }{ \:  \:  \:  \:  \:  \:  \: \dfrac{\cancel{y} - \cancel{y} - q}{\cancel{z}} \:  \:  \:  \:  \:  }

 \rm \:  \:  \:  =  \:    \: \dfrac{ -  \: p}{ -  \: q}

 \rm\:  \:  \:  =  \:  \: \dfrac{p}{q}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Similar questions