Math, asked by luzinpathan33, 7 months ago

Questions and answers for you ​

Attachments:

Answers

Answered by sethrollins13
142

Given :

  • Total Families = 1500

To Find :

  • Probability of a family chosen at random having (i) 2 girl
  • (ii) 1 girl
  • (iii) No girl

Solution :

\longrightarrow\tt{Total\:Outcomes=1500}

(i) 2 girl :

\longmapsto\tt{Favourable\:Outcomes=475}

\longmapsto\tt{Probability=\frac{No.\:of\:Fav.\:Outcomes}{Total\:No.\:of\:Outcomes}}

\longmapsto\tt{\cancel\dfrac{475}{1500}}

\longmapsto\tt\bf{\dfrac{19}{60}}

So , The Probability of getting 2 girl is 19/60 ..

_______________________

(ii) 1 girl :

\longmapsto\tt{Favourable\:Outcomes=814}

\longmapsto\tt{Probability=\frac{No.\:of\:Fav.\:Outcomes}{Total\:No.\:of\:Outcomes}}

\longmapsto\tt{\cancel\dfrac{814}{1500}}

\longmapsto\tt\bf{\dfrac{407}{750}}

So , The Probability of getting 2 girl is 407/750 ..

_______________________

(iii) 0 girl :

\longmapsto\tt{Favourable\:Outcomes=211}

\longmapsto\tt{Probability=\frac{No.\:of\:Fav.\:Outcomes}{Total\:No.\:of\:Outcomes}}

\longmapsto\tt\bf{\dfrac{211}{1500}}

So , The Probability of getting 0 girl is 211/1500 ..

Answered by royronit8568
0

Answer:

Given :

Total Families = 1500

To Find :

Probability of a family chosen at random having (i) 2 girl

(ii) 1 girl

(iii) No girl

Solution :

\longrightarrow\tt{Total\:Outcomes=1500}⟶TotalOutcomes=1500

(i) 2 girl :

\longmapsto\tt{Favourable\:Outcomes=475}⟼FavourableOutcomes=475

\longmapsto\tt{Probability=\frac{No.\:of\:Fav.\:Outcomes}{Total\:No.\:of\:Outcomes}}⟼Probability=

TotalNo.ofOutcomes

No.ofFav.Outcomes

\longmapsto\tt{\cancel\dfrac{475}{1500}}⟼

1500

475

\longmapsto\tt\bf{\dfrac{19}{60}}⟼

60

19

So , The Probability of getting 2 girl is 19/60 ..

_______________________

(ii) 1 girl :

\longmapsto\tt{Favourable\:Outcomes=814}⟼FavourableOutcomes=814

\longmapsto\tt{Probability=\frac{No.\:of\:Fav.\:Outcomes}{Total\:No.\:of\:Outcomes}}⟼Probability=

TotalNo.ofOutcomes

No.ofFav.Outcomes

\longmapsto\tt{\cancel\dfrac{814}{1500}}⟼

1500

814

\longmapsto\tt\bf{\dfrac{407}{750}}⟼

750

407

So , The Probability of getting 2 girl is 407/750 ..

_______________________

(iii) 0 girl :

\longmapsto\tt{Favourable\:Outcomes=211}⟼FavourableOutcomes=211

\longmapsto\tt{Probability=\frac{No.\:of\:Fav.\:Outcomes}{Total\:No.\:of\:Outcomes}}⟼Probability=

TotalNo.ofOutcomes

No.ofFav.Outcomes

\longmapsto\tt\bf{\dfrac{211}{1500}}⟼

1500

211

So , The Probability of getting 0 girl is 211/1500 ..

Step-by-step explanation:

Mark me as brainliest

Similar questions