Math, asked by ғɪɴɴвαłσℜ, 3 months ago

Questions For Advanced Users :-

Refers to the attachment

Avoid spamming

No useless Answers ​

Attachments:

Answers

Answered by amansharma264
83

EXPLANATION.

 \sf \implies \: (1) =  \:  \int \:  \dfrac{1}{ {x}^{4}  - 1} dx.

As we know that,

Formula of ( a² - b²) = ( a + b) (a - b).

Using this formula, we get.

 \sf \implies \:  \int \dfrac{1}{( {x}^{2}   +  1)( {x}^{2}  - 1)} dx.

\sf \implies \:  \dfrac{1}{2}  \int \:  \dfrac{( {x}^{2}  + 1) - ( {x}^{2} - 1) }{( {x}^{2}  - 1)( {x}^{2} + 1) } dx.

\sf \implies \:  \dfrac{1}{2}  \int \:   \bigg(\dfrac{1}{( {x}^{2}  - 1)} \:  \:  -   \:  \:  \dfrac{1}{( {x}^{2}  + 1)}  \bigg)dx.

\sf \implies \:  \dfrac{1}{2}  \int \:  \dfrac{1}{( {x}^{2}  - 1)} dx \:  \:  -  \:  \:  \dfrac{1}{2} \int \:  \dfrac{1}{( {x}^{2}   + 1)} dx.

\sf \implies \:  by \: applying \: the \: formula \\  \\ \sf \implies \:  \int \:  \frac{1}{ {x}^{2}  -  {a}^{2} } dx. =  \frac{1}{2a}  log \bigg( \frac{x - a}{x + a} \bigg ) + c. \\  \\ \sf \implies \:  \frac{1}{ {x}^{2}  + 1}  =  \tan {}^{ - 1} (x)

\sf \implies \:  \int \:  \dfrac{1}{4}  log  \bigg |\dfrac{x - 1}{x + 1} \bigg | \:  -  \dfrac{1}{2} \:  \tan {}^{ - 1} (x)  \:  + c

\sf \implies \:(2) =   \int \:  \dfrac{1}{ ({x}^{2}  -  {a}^{2}) } dx.

As we know that,

Formula of ( a² - b²) = ( a + b) (a - b).

Apply this formula, we get.

\sf \implies \:  \int \:  \dfrac{1}{(x - a)(x + a)}dx.

\sf \implies \:  \dfrac{1}{2a}  \int \:  \dfrac{(x + a) - (x - a)}{(x + a)(x - a)} dx.

\sf \implies \:  \dfrac{1}{2a}  \int \dfrac{(x + a)}{(x + a)(x - a)} dx \:  \:  -  \:  \:  \dfrac{1}{2a}  \int \:  \dfrac{(x - a)}{(x + a)(x - a) } dx.

\sf \implies \:  \int \:  \dfrac{1}{2a}  \bigg( \dfrac{dx}{(x - a)}   \:  \: -  \:  \:  \dfrac{dx}{(x + a)} \bigg)

\sf \implies \:   \dfrac{1}{2a}  \bigg( log(x - a) -  log(x + a)  \bigg) + c.

\sf \implies \:   \dfrac{1}{2a}  log \bigg |  \dfrac{x - a}{x + a}  \bigg | + c.


Anonymous: Every answer " Superb "✌
sainiinswag: outstanding
Anonymous: Rocking like always
Anonymous: Nice as always :)
ItzSantaclaus: Nice
Anonymous: Fabulous Bro! :)
angelgirlnew: marvelous:)
jia111: amazing
Answered by mathdude500
52

Given Question:-

\bf \:Evaluate :- \int \dfrac{1}{ {x}^{4}  - 1} dx

\huge \orange{AηsωeR} ✍

Formula used :-

\bf \:\int \dfrac{1}{ {x}^{2}  -  {a}^{2} } dx = \dfrac{1}{2a}  log(\dfrac{x - a}{x + a} )  + c

\bf \:\int \dfrac{1}{ {x}^{2}   +  {a}^{2} } dx = \dfrac{1}{a}  {tan}^{ - 1} \dfrac{x}{a}  + c

____________________________________________

\large \red{\bf \: Solution :- } ✍

\bf \:\int \dfrac{1}{ {x}^{4}  - 1}  dx

\bf \:  ⟼ \int \dfrac{1}{ ({x}^{2}  - 1)( {x}^{2} + 1) } dx

☆ Multiply and divide by 2, we get

\bf \:  ⟼\dfrac{1}{2}  \int \dfrac{2}{ ({x}^{2}  - 1)( {x}^{2} + 1) }

\bf \:  ⟼\dfrac{1}{2}  \int \dfrac{1 + 1}{ ({x}^{2}  - 1)( {x}^{2} + 1) } dx

\bf \:  ⟼\dfrac{1}{2}  \int \dfrac{1 + 1 +  {x}^{2} -  {x}^{2}  }{ ({x}^{2}  - 1)( {x}^{2} + 1) } dx

\bf \:  ⟼\dfrac{1}{2}  \int \dfrac{(1 +  {x}^{2} ) - ( {x}^{2}  - 1)}{ ({x}^{2}  - 1)( {x}^{2} + 1) } dx

\bf \:  ⟼\dfrac{1}{2}  \int \dfrac{ {x}^{2} + 1 }{ ({x}^{2}  - 1)( {x}^{2} + 1) } dx - \dfrac{1}{2}  \int \dfrac{ {x}^{2} - 1 }{ ({x}^{2}  - 1)( {x}^{2} + 1) }

\bf \:  ⟼ \dfrac{1}{2} \int \dfrac{1}{ {x}^{2}  - 1} dx - \dfrac{1}{2} \int \dfrac{1}{ {x}^{2}   +  1}

\bf \:  ⟼ \dfrac{1}{2}  \times \dfrac{1}{2 \times 1}  log(\dfrac{x - 1}{x + 1} ) -  \dfrac{1}{2}  {tan}^{ - 1} x + c

\bf \:  ⟼ \dfrac{1}{4}  log(\dfrac{x - 1}{x + 1} ) -  \dfrac{1}{2}  {tan}^{ - 1} x + c

___________________________________________


mathdude500: Thank you so much
sainiinswag: Perfect work!!
mathdude500: Thank you so much for your appreciation
ImperialGladiator: Marvellous ✌
angelgirlnew: fabulous :)
mathdude500: Thanks alot Poonam
jia111: amazing
mathdude500: Thanks all of u for such support
mathdude500: Thanks for ur appreciation
Similar questions