Math, asked by luzinpathan33, 6 months ago

Questions my answers ​

Attachments:

Answers

Answered by divit2809
2

Answer:

<spr = <pqr + <prq                                                        (exterior angle property)

135⁰ = (180⁰ - < pqt ) + <prq                                                               (linear pair)              

135⁰- 70⁰ = <prq

65⁰ = < prq

Step-by-step explanation:

hope it helps

Answered by sethrollins13
64

Given :

  • ∠SPR = 135°
  • ∠PQT = 110°

To Find :

  • ∠PRQ

Solution :

\longmapsto\tt{\angle{PQT}+\angle{PQR}=180^{\circ}}

\longmapsto\tt{110^{\circ}+\angle{PQR}=180^{\circ}}

\longmapsto\tt{\angle{PQR}=180^{\circ}-110^{\circ}}

\longmapsto\tt\bold{\angle{PQR}=70^{\circ}}

Now ,

\longmapsto\tt{\angle{SPR}=\angle{PQR}+\angle{PRQ}\:(Exterior\:angle)}

\longmapsto\tt{135^{\circ}=70^{\circ}+\angle{PRQ}}

\longmapsto\tt{135^{\circ}-70^{\circ}=\angle{PRQ}}

\longmapsto\tt\bold{\angle{PRQ}=65^{\circ}}

Therefore :

\longmapsto\tt\bf{\angle{PQR}=70^{\circ}}

\longmapsto\tt\bf{\angle{PRQ}=65^{\circ}}

Similar questions