Math, asked by BrainlyStar909, 3 months ago

Questions of the Day..
(1). A car was purchased for 150,000 in the year 2017. If it's value decresed by 16 % every year. Find the value after 2 years.

(2). The population of a town is increasing at the rate of 10 % per annum. What will be the population of the town after three years if the present population is 15000. ​

Answers

Answered by SachinGupta01
4

Solution - 1

 \sf \: Value \:  after \:  2 \:  Years = Present  \: value \:  \bigg( 1  -  \dfrac{R }{100}  \bigg)^{n}

 \sf \: Value  \: after \:  2 \:  Years = P  \:  \bigg( 1  -  \dfrac{R }{100}  \bigg)^{n}

 \sf \longrightarrow \:  1,50,000  \: \bigg( \: 1 -  \dfrac{16}{100} \:   \bigg)^{2}

 \sf \longrightarrow \:  1,50,000  \: \bigg(  \dfrac{84}{100} \:   \bigg)^{2}

 \sf \longrightarrow \:  1,05,840

 \underline{ \boxed{\pink{ \sf \: Therefore \:  value  \: of  \: car  \: after  \: 2  \: Years = Rs.  \: 1,05,840  }}}

____________________________________

Solution - 2

 \bf \:  \underline{Given} :

 \sf \: Present  \: population \:  (P) = 15000

 \sf \: Rate  \: of  \: growth  \: or \:  Increase \:  = 10  \: \% \:  per  \: annum

 \sf \: Time  \: (n) = 3 \:  Years

 \sf \: Population \:  after \:  3 \:  Years = P  \:  \bigg( 1  +  \dfrac{R }{100}  \bigg)^{n}

 \sf \longrightarrow \:  15000\:  \bigg( 1  +  \dfrac{1 }{100}  \bigg)^{3}

 \sf \longrightarrow \:  15000\:  \bigg(  \dfrac{11 }{10}  \bigg)^{3}

 \sf  \longrightarrow \: 15000\:  \bigg(  \dfrac{11 }{10}  \times  \dfrac{11 }{10}  \times \dfrac{11 }{10} \bigg)

 \sf \longrightarrow \: 19,965

 \underline{ \boxed{ \pink{ \sf \: Hence  \: Population \:  after  \: three  \: years = 19,965}}}

Similar questions