Math, asked by AttitudeBoy999, 1 month ago

Questions :
\\ \sf \: (1). \: Simplify : \: \frac{3 \sqrt{3} - 2 \sqrt{5}}{3 \sqrt{3} + 2 \sqrt{5}} + \dfrac{ \sqrt{12}}{ \sqrt{5} - 3 }
 \sf \: (2). \: Simplify : \: \dfrac{2 \sqrt{3}}{ \sqrt{3} - \sqrt{2}} + \dfrac{3 \sqrt{3}}{ \sqrt{3} + \sqrt{2}}




Answers

Answered by SachinGupta01
7

Solution : 1

 \tt \implies \:  \dfrac{3 \sqrt{3} - 2 \sqrt{5}}{3 \sqrt{3} + 2 \sqrt{5}} +  \dfrac{ \sqrt{12}}{ \sqrt{5} - 3 }

 \tt \implies  \: \dfrac{3 \sqrt{3} - 2 \sqrt{5}}{3 \sqrt{3} + 2 \sqrt{5}} \times \dfrac{3 \sqrt{3} - 2 \sqrt{5}}{3 \sqrt{3}  -  2 \sqrt{5}} +  \dfrac{  2\sqrt{3}}{ \sqrt{5} - 3 } \times  \dfrac{ \sqrt{5} + 3 }{ \sqrt{5} + 3}

 \tt \implies   \: \dfrac{(3 \sqrt{3} )^{2} + (2 \sqrt{5})^{2} - 2 \times 3  \sqrt{3} \times 2 \sqrt{5}}{(3 \sqrt{3} )^{2} - (2 \sqrt{5})^{2}}   +  \dfrac{2 \sqrt{15}+ 6 \sqrt{3}}{( \sqrt{5})^{2} - 3 ^{2}  }

 \tt \implies   \:  \dfrac{27 + 20 - 12  \sqrt{15}}{27 - 20}   +  \dfrac{2( \sqrt{15} + 3 \sqrt{3}  )}{5 - 9}

 \tt \implies  \:   \dfrac{47- 12  \sqrt{15}}{7} - \dfrac{2( \sqrt{15} + 3 \sqrt{3}  )}{4}

 \tt \implies   \:  \dfrac{47- 12  \sqrt{15}}{7} -  \dfrac{\sqrt{15} + 3 \sqrt{3} }{2}

 \tt \implies  \: \dfrac{94 - 24 \sqrt{15} - 7 \sqrt{15}  -  21\sqrt{3}}{14}

\tt \: \implies   \:  \dfrac{94 - 31 \sqrt{15}  - 21 \sqrt{3}}{14}

______________________________________

Solution : 2

 \tt \implies  \:  \dfrac{2 \sqrt{3}}{ \sqrt{3} -  \sqrt{2}} + \dfrac{3 \sqrt{3}}{ \sqrt{3}  +  \sqrt{2}}

 \tt  \implies \:   \dfrac{2 \sqrt{3}}{ \sqrt{3} -  \sqrt{2}}  \times \dfrac{ \sqrt{3} +  \sqrt{3} }{ \sqrt{3} +  \sqrt{2} } + \dfrac{3 \sqrt{3}}{ \sqrt{3}  +  \sqrt{2}} \times  \dfrac{ \sqrt{3}  -   \sqrt{3} }{ \sqrt{3}  -   \sqrt{2} }

\tt  \implies \:    \dfrac{2 \sqrt{3}( \sqrt{3} +  \sqrt{2}) } {( \sqrt{3} ) ^{2} - ( \sqrt{2} )^{2}}  +   \dfrac{3 \sqrt{3}( \sqrt{3} -  \sqrt{2}) }{( \sqrt{3})^{2}  - ( \sqrt{2})^{2}}

 \tt  \implies \:    \dfrac{2  \times 3 \times2  \sqrt{6} }{3 - 2}   +  \dfrac{3 \times 3 - 3 \sqrt{6} }{3 - 2}

 \tt  \implies \:   6 + 2 \sqrt{6}  + 9 - 3 \sqrt{6}

 \tt  \implies \:   15 -  \sqrt{6}

Similar questions