Math, asked by yash201817, 1 year ago

Questioun 13 pls I will mark brainlillest

Attachments:

Answers

Answered by shadowsabers03
0

8x^3-6x^2-4x+4 \\ \\ 8x^3-6x^2-4x+3+1 \\ \\ 24x^2(\frac{x}{3}-\frac{1}{4})-12(\frac{x}{3}-\frac{1}{4})+1 \\ \\ (24x^2-12)(\frac{x}{3}-\frac{1}{4})+1 \\ \\ \\ \therefore\ \bold{1}\ $is the remainder. \\ \\ \\

$$OR$

\frac{x}{3}-\frac{1}{4}=0 \ \ \Rightarrow\ \ \frac{x}{3}=\frac{1}{4}\ \ \Rightarrow\ \ x=\frac{3}{4}

\therefore\ \ p(x)\ \ $divided by$\ \ g(x)\ \ $leaves remainder$\ \ p(\frac{3}{4}). \\ \\ \\

\therefore\ p(\frac{3}{4})=8(\frac{3}{4})^3-6(\frac{3}{4})^2-4(\frac{3}{4})+4 \\ \\ \Rightarrow p(\frac{3}{4})=8 \times \frac{27}{64}-6 \times \frac{9}{16}- 4\times \frac{3}{4} + 4 \\ \\ \Rightarrow p(\frac{3}{4})=\frac{27}{8}-\frac{27}{8}-3+4 \\ \\ \Rightarrow p(\frac{3}{4})=\bold{1}

\therefore\ \bold{1}\ $is the remainder. \\ \\ \\ I think this is the right method for the question.

==============================================================

\bold{OR}

==============================================================

x^{1/3}+\frac{1}{x^{1/3}}=5 \\ \\ \\ (x^{1/3}+\frac{1}{x^{1/3}})^3=5^3 \\ \\ (x^{1/3})^3+(3 \cdot (x^{1/3})^2 \cdot \frac{1}{x^{1/3}})+(3 \cdot x^{1/3} \cdot (\frac{1}{x^{1/3}})^2)+(\frac{1}{x^{1/3}})^3=125 \\ \\ x+3 \cdot (x^{1/3}) + 3 \cdot (\frac{1}{x^{1/3}}) + \frac{1}{x}=125 \\ \\ x+\frac{1}{x}+3(x^{1/3}+\frac{1}{x^{1/3}})=125 \\ \\ x+\frac{1}{x}+3 \cdot 5=125 \\ \\ x+\frac{1}{x}+15=125 \\ \\ x+\frac{1}{x}=125-15 \\ \\ x+\frac{1}{x}=110

(x+\frac{1}{x})^2=110^2 \\ \\ x^2+(2 \cdot x \cdot \frac{1}{x})+\frac{1}{x^2}=12100 \\ \\ x^2+\frac{1}{x^2}+2=12100 \\ \\ x^2+\frac{1}{x^2}=12100-2 \\ \\ x^2+\frac{1}{x^2}=\bold{12098}

==============================================================

Hope this helps you. ^_^

Please mark it as the brainliest if this helps you.

Please ask me if you've any doubt on my answer.

Thank you. :-))

                   

Similar questions