R(15 , 5) , T(9 , 20) and R-S-T. Find the ratio in which point S(11 , 15) divides seg RT.
Answers
Answer:
The point S ( 11, 15 ) divides seg RT in the ratio 2 : 1.
Step-by-step-explanation:
NOTE: Refer to the attachment for the graphical representation.
The given points are
- R ( 15, 5 ) ≡ ( x₁, y₁ )
- T ( 9, 20 ) ≡ ( x,₂ y₂ )
- S ( 11, 15 ) ≡ ( x, y )
We have to find the ratio in which point S divides the seg RT.
Let the ratio be m : n.
Now, by section formula,
x = ( mx₂ + nx₁ ) / ( m + n )
⇒ 11 = ( m * 9 + n * 15 ) / ( m + n )
⇒ 11 ( m + n ) = 9m + 15n
⇒ 11m + 11n = 9m + 15n
⇒ 11m - 9m = 15n - 11n
⇒ 2m = 4n
⇒ m / n = 4 / 2
⇒ m / n = 2 / 1
⇒ m : n = 2 : 1
∴ The ratio in which point S divides seg RT is 2 : 1.
────────────────────────
We can find the ratio by using section formula for y coordinate too.
By section formula,
y = ( my₂ + ny₁ ) / ( m + n )
⇒ 15 = [ m * 20 + n * 5 ] / ( m + n )
⇒ 15 ( m + n ) = 20m + 5n
⇒ 15m + 15n = 20m + 5n
⇒ 15n - 5n = 20m - 15m
⇒ 10n = 5m
⇒ 5m = 10n
⇒ m / n = 10 / 5
⇒ m / n = 2 / 1
⇒ m : n = 2 : 1
∴ The ratio in which point S divides seg RT is 2 : 1.