Math, asked by StarTbia, 1 year ago

R(-3a,a), S(a,-2a) Find the distances between the points.

Answers

Answered by tiwaavi
54
Let the Points R(-3a,a) and S(a,-2a) be R(x₁,y₁) and S(x₂, y₂) respectively. 

Using the Distance Formula, 
   d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
⇒ d = \sqrt{(a + 3a)^2 + (-2a - a)^2}
⇒ d = \sqrt{(4a)^2 + (-3a)^2}
⇒ d = \sqrt{(16a^2 + 9a^2)}
⇒ d = \sqrt{25a^2}
∴ d = 5a


Hence, the Distance between the two points is 5a units. 


Hope it helps.
Answered by Robin0071
16
SOLUTION:-
GIVEN POINTS :- R(-3a,a), S(a,-2a)
here,
x _{1} =  - 3a \:  \:  \:  \:y _{1}  = a\\ x _{2} = a \:  \:  \:  \: y _{2} =  - 2a\\ distance \: formula \:  \\ d =   \sqrt{ {(x _{2} - x _{1})}^{2} +  {(y _{2} - y _{2} ) }^{2}  }    \\ d =  \sqrt{ {(a + 3a)}^{2}  +  {( - 2a  - a)}^{2} }  \\ d =  \sqrt{16 {a}^{2}  + 9 {a}^{2} }  \\ d =  \sqrt{25 {a}^{2} }  \\ d = 5
hence, the distance is 5 unit


■I HOPE ITS HELP■
Similar questions