Math, asked by juhugalli123, 5 months ago

R
4. In figure, ZPQR = 90° , QSI PR
if QS = 12, RS = 16,
find (1) PS (2) QR
S
P
3/​

Answers

Answered by xXMarziyaXx
1

Given:

  • In triangle PQR,

  • ∠Q = 90 degree

  • seg SQ perpendicular hypotenuse PR

  • PS = 16 cm

To find:

  • The length of QS

Solution:

  • SR = 9cm

  • Since it is given that seg SQ ⊥ PR

∴ ∠PSQ = ∠QSR = 90°

⇒ ΔPSQ & ΔQSR are right-angled triangles

In rt-angled Δ PSQ, using Pythagoras theorem,

PS² + QS² = PQ²

substituting PS = 16 cm

⇒ 16² + QS² = PQ²

⇒ QS² = PQ² - 16² ___ (i)

In rt-angled Δ QSR, using Pythagoras theorem,

QS² + SR² = QR²

⇒ QS² = QR² - 9² ___ (ii)

substituting SR = 9 cm

⇒ QS² + 9² = QR²

From equation (i) & (ii), we get

PQ² - 16² = QR² - 9²

⇒ PQ² - QR² = 256 - 81

In rt-angled Δ PQR, using Pythagoras theorem,

substituting the value of PS = 16 cm & SR = 9 cm

⇒ PQ² + QR² = (PS + SR)²

⇒ PQ² - QR² = 175 ___ (iii)

PQ² + QR² = PR²

⇒ PQ² + QR² = (16 + 9)²

PQ² + QR² = 625

Now, adding equations (iii) & (iv), we get

⇒ PQ² + QR² = 625 ___ (iv)

⇒ PQ² + QR² = 25²

PQ² - QR² = 175

_____________

2PQ² = 800

_____________

∴ PQ² =

= 400

800/2 Subst.it.uting the value of PQ² = 400 in eq. (i), we get

⇒ QS² = 400 - 16²

QS² = PQ² - 16²

⇒ QS² = 400 - 256

⇒ QS = √144

⇒ QS = 12 cm

{QS = 12cm

Thus,

⇒ QS² = 144

 \\

Similar questions