Math, asked by Madhuzinta, 1 year ago


R is defined by f(x) = x2 - 3x + 2, find f(f(x)).​

Answers

Answered by siva1777
0

Step-by-step explanation:

we know,

f(f(x))=f(x^2-3x+2)

=(x^2-3x+2)^2-3(x^2-3x+2)+2

=in This away Solved it..

Answered by Anonymous
262

{ \huge{\boxed{\tt {\color{red}{Answer}}}}}

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Given function:

f(x) = x2 − 3x + 2.

To find f(f(x))

f(f(x)) = f(x)√2 − 3f(x) + 2.

= (x^2 – 3x + 2)^2 – 3(x^2 – 3x + 2) + 2

By using the formula (a-b+c)2 = a2+ b2+ c2-2ab +2ac-2ab, we get

= (x^2)^2 + (3x)^2 + 22– 2x^2 (3x) + 2x^2(2) – 2x^2(3x) – 3(x^2 – 3x + 2) + 2

Now, substitute the values

= x^4 + 9x^2 + 4 – 6x^3 – 12x + 4x^2 – 3x^2 + 9x – 6 + 2

= x^4 – 6x^3 + 9x^2 + 4x^2 – 3x^2 – 12x + 9x – 6 + 2 + 4

Simplify the expression, we get,

f(f(x)) = x^4 – 6x^3 + 10x^2 – 3x

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Hope It's Helpful.....:)

Similar questions