R is defined by f(x) = x2 - 3x + 2, find f(f(x)).
Answers
Answered by
0
Step-by-step explanation:
we know,
f(f(x))=f(x^2-3x+2)
=(x^2-3x+2)^2-3(x^2-3x+2)+2
=in This away Solved it..
Answered by
262
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
Given function:
f(x) = x2 − 3x + 2.
To find f(f(x))
f(f(x)) = f(x)√2 − 3f(x) + 2.
= (x^2 – 3x + 2)^2 – 3(x^2 – 3x + 2) + 2
By using the formula (a-b+c)2 = a2+ b2+ c2-2ab +2ac-2ab, we get
= (x^2)^2 + (3x)^2 + 22– 2x^2 (3x) + 2x^2(2) – 2x^2(3x) – 3(x^2 – 3x + 2) + 2
Now, substitute the values
= x^4 + 9x^2 + 4 – 6x^3 – 12x + 4x^2 – 3x^2 + 9x – 6 + 2
= x^4 – 6x^3 + 9x^2 + 4x^2 – 3x^2 – 12x + 9x – 6 + 2 + 4
Simplify the expression, we get,
f(f(x)) = x^4 – 6x^3 + 10x^2 – 3x
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
Hope It's Helpful.....:)
Similar questions