R1 and R2 are the remainder when f(x) equal 4x³+3x²-12ax -5and g(x) equal 2x³+ax²-6x-2 are divided by(x-1) and respectively. If3R1+R2-28equal0 find a
Answers
Answered by
7
➣ f(x) = 4x³ + 3x² - 12ax - 5
When x - 1 is a quotient then value of x = +1
f(1) = 4(1)³ + 3(1)² - 12a(1) - 5
R1 = 4 + 3 - 12a - 5
R1 = 2 - 12a
➣ g(x) = 2x³ + ax² - 6x - 2
g(1) = 2(1)³ + a(1)² - 6(1) - 2
R2 = 2 + a - 6 - 2
R2 = - 6 + a
➣ Now, 3R1 + R2 - 28 = 0
3( 2 - 12a ) + ( - 6 + a ) - 28 = 0
6 - 36a - 6 + a - 28 = 0
- 36a + a = 28
- 35a = 28
ShuchiRecites:
Please refresh the page!
Similar questions