r1r2+r2r3+r3r1=s²=(a+b+c/2)³
Answers
EXPLANATION.
⇒ r₁r₂ + r₂r₃ + r₃r₁ = s².
As we know that,
Formula of :
⇒ r₁ = Δ/(s - a).
⇒ r₂ = Δ/(s - b).
⇒ r₃ = Δ/(s - c).
Using this formula in the equation, we get.
⇒ [Δ/(s - a) x Δ/(s - b)] + [Δ/(s - b) x Δ/(s - c)] x [Δ/(s - c) x Δ/(s - a)].
⇒ [Δ²/(s - a)(s - b) + Δ²/(s - b)(s - c) + Δ²/(s - c)(s - a)].
⇒ Δ²[1/(s - a)(s - b) + 1/(s - b)(s - c) + 1/(s - c)(s - a)].
⇒ Δ²[(s - c) + (s - a) + (s - b)/(s - a)(s - b)(s - c)].
As we know that,
Formula of :
⇒ a + b + c = 2s.
⇒ s(s - a)(s - b)(s - c) = Δ².
Using this formula in the equation, we get.
⇒ Δ²[3s - (a + b + c)/(s - a)(s - b)(s - c)].
⇒ Δ²[(3s - 2s)/(s - a)(s - b)(s - c)].
⇒ Δ²[s/(s - a)(s - b)(s - c)].
Multiply and divide by s in equation, we get.
⇒ Δ²[s²/s(s - a)(s - b)(s - c)].
⇒ Δ²[s²/Δ²] = s².
Hence Proved.
Step-by-step explanation: