Hindi, asked by avibhandarkar08, 2 months ago

राजा हरिश्चंद्र च पुर्ण नाव​

Answers

Answered by ItzMissPayal
12

Answer:

I hope is helpful

Explanation:

Raja Harishchandra Bos

Mark I am marathi

Answered by Anonymous
1

Given :-

\qquad ☀️ \sf x =  \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

\qquad ☀️\sf y =  \dfrac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2}  }

To Find :-

\qquad ☀️ \sf  {x}^{2}  +  {y}^{2}  = ?

Solution :-

 \sf\underline{{Rationalising :- }} \\\\\green{ \qquad\leadsto\quad\sf  x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  } \times  \frac{ \sqrt{3}   +   \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }}  \\

 \qquad\leadsto\quad\sf x = \frac{ (\sqrt{3} +  \sqrt{2} )^{2} }{ {( \sqrt{3}})^{2} -  { (\sqrt{2} })^{2}   } \\

 \qquad\leadsto\quad\sf  x = \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2} )}^{2}  + 2 \sqrt{6}  }{3 - 2}\\

 \qquad\leadsto\quad\sf x =3 + 2 + 2 \sqrt{6} \\

 \green{\qquad\leadsto\quad\sf  x =5 + 2 \sqrt{6} } \\\\

 \qquad\leadsto\quad \sf\underline{{Similarly : -}} \\\\ \purple{\qquad\leadsto\quad\sf y = \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }} \\

 \qquad\leadsto\quad\sf y = \frac{ (\sqrt{3}  -  \sqrt{2})^{2} }{ {( \sqrt{3} )}^{2} -  { (\sqrt{2} })^{2}  } \\

 \qquad\leadsto\quad\sf  y= \frac{ { (\sqrt{3} })^{2} +  {( \sqrt{2} )}^{2}  - 2 \sqrt{6}  }{3 - 2 }\\

 \qquad\leadsto\quad\sf  y=3 + 2 - 2 \sqrt{6} \\

 \purple{\qquad\leadsto\quad\sf y =5 - 2 \sqrt{6}}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

 \qquad\leadsto\quad\sf\underline{{ Putting \: values : -}} \\\\\pink{\qquad\leadsto\quad\sf {x}^{2}  +  {y}^{2} =(x + y)^{2}  - 2xy }\\  \\ \sf \leadsto {x}^{2}  +  {y}^{2} =(5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6} )^{2}  - 2(5  +  2\sqrt{6} )(5 - 2 \sqrt{6} ) \\  \\ \sf \leadsto  {x}^{2}  +  {y}^{2} = {10}^{2}  - 2( {5}^{2}  -  {(2 \sqrt{6}) }^{2}  \\  \\ \sf  \leadsto  {x}^{2}  +  {y}^{2} =100 - 2(25 - 24) \\  \\ \sf  \leadsto {x}^{2}  +  {y}^{2} =100 - 2 \\  \\  \pink{\sf  \leadsto {x}^{2}  +  {y}^{2} =98}\\\\

Similar questions