रैखिक समीकरण युग्म का सबसे व्यापक रूप लिखिए
Answers
Answer:
मुख्य अवधारणाएं और परिणाम
एक ही (या समान) दो चरों वाले रैखिक समीकरण दो चरों वाले समीकरणों का एक युग्म बनाते हैं।
रैखिक समीकरणों के एक युग्म का व्यापक रूप है :
a₁ x + b₁y + c₁ = 0
a₂ x + b₂ y + c₂ = 0,
जहां a₁ , a₂ , b₁ , b₂ , c₁ , c₂ ऐसी वास्तविक संख्याएँ हैं कि …
यदि रैखिक समीकरणों का एक युग्म संगत (या अविरोधी) होता है तो इसका या अद्वितीय हल हो या अपरिमित रूप से अनेक हल हों। अपरिमित रूप से अनेक हलों की स्थिति में, रैखिक समीकरणों का यह युग्म आश्रित कहलाता है। इस प्रकार, इस स्थिति में, रैखिक समीकरणों का युग्म आश्रित और संगत होता है।
रैखिक समीकरण का युग्म असंगत (या अविरोधी) होता है, यदि उसका कोई हल नहीं हो।
मान लीजिए कि a₁ x + b₁ y + c₁ = 0 और a₂ x + b₂ y + c₂ = दो चरों वाली रैखिक समीकरणों का एक युग्म है।
यदि a₁/a₂ ≠ b₁/b₂ है, तो
रैखिक समीकरणों का युग्म संगत होता है ;
युग्म का आलेख एक अद्वितीय बिंदु पर प्रतिच्छेद करने वाली रेखाओं का एक युग्म होता है तथा यही प्रतिच्छेद बिंदु समीकरणों के युग्म का हल प्रदान करता है।
I hope it would help✌