रिमाइंडर रन 2 एक्स धर्मेंद्र ग्रैंड 2 एक्स क्यूब प्लस 5 एक्स स्क्वेयर माइनस एक्स प्लस टू इज डिवाइडेड बाय टू
Answers
Answered by
1
Answer:
TO DETERMINE
The remainder when x³ - 2x² + x + 1 is divided by x - 1
EVALUATION
Let
\sf{f(x) = {x}^{3} - 2 {x}^{2} + x + 1 }f(x)=x
3
−2x
2
+x+1
g(x) = x - 1
For Zero of the polynomial g(x) we have
g(x) = 0
\implies \sf{x - 1 = 0}⟹x−1=0
\implies \sf{x = 1}⟹x=1
Hence by the Remainder Theorem the required remainder when x³ - 2x² + x + 1 is divided by x - 1 is
= f(1)
\sf{ = {(1)}^{3} - 2 \times {(1)}^{2} + 1 + 1 }=(1)
3
−2×(1)
2
+1+1
\sf{ = 1 - 2 + 1 + 1}=1−2+1+1
= 1=1
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. Find the remainder when x³-ax²+6x-a is divided by x - a.
https://brainly.in/question/5714646
2. If polynomial 3x^3 – 2x^2 + 4x + 1 is divided by x - 2, then remainder is
https://brainly.in/question/31996931
hope it's help you!!!
#XMissheadacheX
Similar questions