Math, asked by VerifiedQuestion, 5 months ago

Radhica deposited rupees 5000 in a bank on 5th January 2011 . She withdrew the total amount on 31 May 2011 . if the bank pays simple interest of 6% per annum, then what amount does she get?

Answers

Answered by Anonymous
1

Hope this will help you.

Attachments:
Answered by Anonymous
19

\begin{gathered}\begin{gathered}\begin{gathered} \begin{gathered} \begin{gathered}\begin{gathered}\\\;\underbrace{\underline{\sf{Question:-}}}\end{gathered}\end{gathered} \end{gathered} \end{gathered} \end{gathered} \end{gathered}

Radhica deposited rupees 5000 in a bank on 5th January 2011 . She withdrew the total amount on 31 May 2011 . if the bank pays simple interest of 6% per annum, then what amount does she get?

______________________________________________

★ Formula Used :-

\begin{gathered}\begin{gathered}\\\;\boxed{\sf{\pink{simple \: interest\;=\;\bf{\bigg(\;\dfrac{p \times r \times t}{100}\bigg)}}}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\;\boxed{\sf{\pink{amount\;=\;\bf{\bigg(\;principal + simple \: interest\bigg)}}}}\end{gathered} \end{gathered}

______________________________________________

★ Solution :-

Given,

» Principal = ( P ) = Rs. 5000

» Rate = 6%

• now we need to find time in years

To find ,

» Amount

~ Let's find time in years ,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf MONTH &\sf NO. \: OF \: DAYS\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf January&\sf \ 26 \\\\\sf Febuary &\sf \ 28\\\\\sf March&\sf \ 31 \\\\\sf April&\sf 30\\\\\sf May&\sf 31 \\\\\sf Total&\sf 146 \: days \\\\\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{}}\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Note - we have written 26 days on January because day of deposit is not counted and we have written 31 days in May because day of withdrawal is counted .

\begin{gathered}\begin{gathered}\\\; \therefore{\sf{time = 146 \: days\;=\; \frac{146}{365} =  \frac{2}{5} years}}\end{gathered} \end{gathered}

Now , by using the formula of simple interest

\begin{gathered}\begin{gathered}\\\; \longrightarrow{\sf{simple \: interest\;=\;\bf{\bigg(\;\dfrac{p \times r\times t}{100 }\bigg)}}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\; \longrightarrow{\sf{simple \: interest\;=\;\bf{\bigg(\;\dfrac{5000 \times 6\times 2}{100  \times 5}\bigg)}}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\; \Longrightarrow{\sf{simple \: interest\;=\;\bf{rs \: 120}}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\;\underline{\boxed{\tt{\odot\;\;Hence,\;\;simple \: interest\;=\;\bf{\blue{Rs\;\;120}}}}}\end{gathered} \end{gathered}

Now , by using the formula of amount

\begin{gathered}\begin{gathered}\\\; \longrightarrow{\sf{amount\;=\;\bf{\bigg(\;principal + simple \: interest \bigg)}}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\; \longrightarrow{\sf{amount\;=\;\bf\;rs \: 5000+ rs \: 120}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\; \Longrightarrow{\sf{amount\;=\;\bf\;rs \: 5120}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\\\;\underline{\boxed{\tt{\odot\;\;Hence,\;\; amount\;=\;\bf{\blue{Rs\;\;5120}}}}}\end{gathered} \end{gathered}

______________________________________________

★ More to know :-

\begin{gathered}\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; {simple \: interest\;=\;\bf{\bigg(\;\dfrac{p \times r \times t}{100}\bigg)}}}}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; {principal\;=\;\bf{\bigg(\;\dfrac{si \times 100 }{r \times t}\bigg)}}}}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; {rate\;=\;\bf{\bigg(\;\dfrac{si \times 100 }{p \times t}\bigg)}}}}\end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\\;\sf{\gray{\leadsto\;\; {time\;=\;\bf{\bigg(\;\dfrac{si \times 100 }{p \times r}\bigg)}}}}\end{gathered} \end{gathered} \end{gathered}

Similar questions