Physics, asked by ragetattva1, 9 months ago

Radiation of wavelength 4500 Å is

incident on a metal having work function

2.0 eV. Due to the presence of a magnetic

field B, the most energetic photoelectrons

emitted in a direction perpendicular to

the field move along a circular path of

radius 20 cm. What is the value of the

magnetic field B?​

Answers

Answered by Anonymous
29

Given :

  • Wavelength (\lambda) = 4500Å or {\sf 45 \times 10^{-8}\: m}
  • Work function (\phi) = 2eV
  • Radius of Circular path (r) = 20cm or 0.2m

To Find :

  • Magnetic Field (B)

Formula Used :

\implies\underline{\boxed{\sf K = E - \phi}}

K = Kinetic Energy

E = Energy of photon

\phi = Work function

\implies\underline{\boxed{\sf p = mv = \sqrt{2mK}}}

p = momentum

m = mass of electron

\implies\underline{\boxed{\sf r = \dfrac{mv}{qB}}}

q = 1.6 × {\sf 10^{-19}\:C}

Solution :

Kinetic Energy of electron -

\implies{\sf K = \dfrac{hc}{\lambda}-\phi }

\implies{\sf \dfrac{6.6\times 10^{-34} \times 3 \times 10^8}{45 \times 10^{-8}} - 2 \times 1.6 \times 10^{-19}}

\implies{\sf \dfrac{19.8 \times 10^{-18}}{45}- 3.2 \times 10^{-19}}

\implies{\sf 0.44 \times 10^{-18}- 0.32 \times 10^{-18}}

\implies{\bf K = 12 \times 10^{-16}\: J }

Moment of Electron (p) :

\implies{\sf p = mv = \sqrt{2mK} }

m = mass of Electron = 9.1 × {\rm 10^{31}\:kg}

\implies{\sf \sqrt{2 \times 9 \times 10^{-31} \times 12 \times 10^{-16}} }

\implies{\sf \sqrt{21.8 \times 10^{-46}} }

\implies{\bf p = 4.6 \times 10^{-23}\: kg.m/s }

The most energetic photoelectronsbemitted in a direction perpendicular to the field move along a circular path

\implies{\sf  r = \dfrac{mv}{qB}}

\implies{\sf 0.2= \dfrac{4.6\times 10^{-23}}{1.6 \times 10^{-19}\times B} }

\implies{\sf  B = \dfrac{4.6 \times 10^{-23}}{1.6 \times 10^{-19}\times 0.2}}

\implies{\sf  B = \dfrac{4.6 \times 10^{-23}}{3.2 \times 10^{-19}}}

\implies{\bf  B = 1.4 \times 10^{-4}\: T}

Answer :

Value of Magnetic Field is {\bf 1.4 \times 10^{-4}\:T}

Similar questions