Math, asked by konduribangarulakshm, 3 months ago

radius,
18. The distance between (3,x) and (-7,2) is 10. Find the value of 'x'​

Answers

Answered by nithya353
1

Answer:

x = 2

Step-by-step explanation:

Distance formula is

d =   \sqrt{( {x2 - x1)}^{2} + (y2 - y1)^{2}  }

d = 10, (x1, y1) = (3, x), (x2, y2) = (-7, 2)

10 =  \sqrt{ {( - 7 - 3)}^{2}  +  {(2 - x)}^{2} }

Squaring on both sides,

100 =  {( - 10)}^{2}  +  {(2 - x)}^{2}

 {(2 - x)}^{2}   + 100 = 100

 {(2 - x)}^{2}  = 100 - 100

 {(2 - x)}^{2}  = 0

(x - 2)(x - 2) = 0

x = 2, 2

x = 2 units

(if you find this answer helpful mark me brainliest)

Answered by jaswasri2006
0

✅ Verified Answer

Given :

 \\

  • x1 = 3 , x2 = -7
  • y1 = x , y2 = 2
  • Distance between them is 10 units

 \\  \\  \\

to find : value of x

 \\  \\

 \sf  {(distance)}^{2}  \:  \:  =  {( { }^{ \large x}    {2}^{ \: } - { }^{ \large x}    {1}^{ \: }   )}^{2}  +  {( { }^{ \large y}  {2}^{ \: } - { }^{ \large y}    {1}^{ \: }   )}^{2}

then ,

 \sf {(10)}^{2}   =  {( - 7 - 3)}^{2}  +  {(2 - x)}^{2}

 \sf 100 =  {( - 10)}^{2}  + {(2 - x)}^{2}

 \sf 100 = 100 + 4  + {x}^{2}  \:  \:  \implies \:  \: 100 = 104 +  {x}^{2}

 \sf  {x}^{2}  = 100 - 104 =  - 4 \:  \:  \implies \:  \:  {x}^{2}  =  - 4

 \sf x =  \sqrt{ - 4}  = ± 2

Mark as Brainliest answer please my friend

Similar questions