Math, asked by ajayderoliya1, 5 months ago

radius and slant height of a cone is in the form a ratio of 4:7. if curved surface area of cone is 792 cm² then find its radius. ​

Answers

Answered by ADARSHBrainly
16

Given :-

  • Ratio of Radius and slant height = 4 : 7
  • Curved Surface Area = C.S.A = 792 cm²

To find :-

  • Radius of cone

Assumption :-

  • Let Ratio be in x form as
  • Radius = 4x
  • Slant height = 7x

Formula used :-

  •  { \underline{ \boxed{ \sf{C.S.A = \pi rl}}}}
  • Here , π = pi = 22/7
  • r = Radius
  • l = Slant height

Solution :-

•Substituting the values in formula for finding value of x :-

{ \implies{ \sf{C.S.A = \pi rl}}}

{ \implies{ \sf{792 =  \cfrac{22}{7}   \times 4x \times 7x}}}

{ \implies{ \sf{792 =  \cfrac{22}{7}   \times 28x^2}}}

{ \implies{ \sf{792 =  22 \times 4 {x}^{2} }}}

{ \implies{ \sf{ \cfrac{792}{22}  =  4 {x}^{2} }}}

{ \implies{ \sf{ 36  =  4 {x}^{2} }}}

{ \implies{ \sf{  \cfrac{36}{4}  =  {x}^{2} }}}

{ \implies{ \sf{  {x}^{2}  = 9}}}

{ \implies{ \sf{  x =  \sqrt{9} }}}

{ \underline{ \boxed{ \blue{ \implies{ \sf{  x = 3 }}}}}}

So, Radius of the cone is :-

\large{\longmapsto{ \sf{Radius = 4x }}} \\  \\ \large{\longmapsto{ \sf{Radius = 4(3) }}}  \\  \\ \large{ \underline{ \boxed{ \red{\longmapsto{ \sf{Radius = 12 \: cm}}}}}}

______________________________

VERIFICATION :-

  • Before verification we need to find Slant height of the cone. So, slant height is :-

  • Slant Height = 7x = 7(3) = 21 cm .

VERIFICATION:-

 { \implies{ \sf{C.S.A = \pi rl}}}

{ \implies{ \sf{792 =  \cfrac{22}{7}  \times 12 \times 21}}}

{ \implies{ \sf{792 =  22 \times 12 \times 3}}}

{ \implies{ \sf{792 =  792}}}

LHS = RHS

Here, LHS is equal to RHS , so our answers are correct.

______________________________

More to know :-

More formulas related to Cone :-

\boxed{\begin{minipage}{6 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cone :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area = \pi rl\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:TSA = Area\:of\:Base + CSA=\pi r^2+\pi rl\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\dfrac{1}{3}\pi r^2h\\ \\{\textcircled{\footnotesize\textsf{5}}} \: \:Slant \: Height=\sqrt{r^2 + h^2}\end{minipage}}

Answered by llitzsanull
2

Step-by-step explanation:

Given

The radius and slant of height of a cone are in the ratio 4:7

Curved Surface Area is 792 cm²

___________________________________

To Find

The radius

___________________________________

Solution

Let's consider the radius to be '4x' and height be '7x' (Here we have taken the radius as 4x and 7x since they are in the ratio of 4:7)

Formula to find the curved surface area of a cone ⇒ πrl

Here,

'r' stands for radius.

'l' stands for the slant height.

Curved surface area of the cone ⇒ 729 cm²

Let's solve the equation step-by-step

22/7×4x×7x =792

Step 1: Simplify the equation.

⇒ 22/7 4x × 7x = 729

⇒22/7×28x² =729

=22×4x²= 792

=88x²=792

Step 2: Divide 88 from both sides of the equation.

⇒ 88x²/88 = 792/88

Step 3: Find the square root of 9.

⇒ x=√9

= x=3

∴ The radius ⇒ 4x ⇒ 4(3) ⇒ 12 cm

∴ The slant height of cone ⇒ 7x ⇒ 7(3) ⇒ 21 cm

___________________________________

Similar questions