Math, asked by yugneema123, 1 day ago

radius of a circle increase at the rate of 2cm/sec at what rate area increase when a radius is 10 cm​

Answers

Answered by Starrex
8

Cσrrєcт Qυєѕтiσи —

The radius of a circle is increasing uniformally at the rate of 3 cm/sec . Find the rate at which the area of circle is increasing when the radius is 10 cm.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Let :

  • r be the radius of circle .
  • A be the area of circle .

Giνєи :

  • Radius of circle is increasing at the rate of 3 cm/sec .
  • \sf{\longmapsto \dfrac{dr}{dt}=3cm^s}

We need to find the rtae of change of area of circle w.r.t time , when r = 10cm. i.e,

 \qquad\rm{\longrightarrow \dfrac{dA}{dt}} , when r = 10 cm

We know that :

 \qquad{\pmb{\rm{Area_{(circle)}=\pi r^2 }}}

Differentiating w.r.t time :

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}=\dfrac{d(\pi r^2)}{dt}}

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}= \pi \dfrac{d(r^2)}{dt}}

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}= \pi\dfrac{d(r^2)}{dt}\times \dfrac{dr}{dr}}

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}=\pi \dfrac{d(r^2)}{dr}\times \dfrac{dr}{dt} }

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}= \pi .2r.\dfrac{dr}{dt}}

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}=2\pi r .\dfrac{dr}{dt} }

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}=2\pi r .3 }

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}= 6\pi r}

Where r = 10 cm

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}\bigg |_{r=10}=6\times \pi \times 10 }

 \qquad\sf{\longrightarrow \dfrac{dA}{dt}\bigg | _{r=10} = 60\pi }

Since , area is in cm ² , and time is in sec :

 \qquad{\pmb{\rm{\longrightarrow \dfrac{dA}{dt}=60\pi cm^2 /sec  }}}

Hence , area is increasing at the rate of 60π cm²/ sec , when r is 10cm

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by jadhavjitender22
2

Answer:

ABC revolt circle of rid of circle of

Step-by-step explanation:

red circle Dr straight line 13 cm a answer Deepti very tension tension CM mm Dr t r d r ti r 2 are equal equal to our DRDO

Similar questions