Math, asked by ItsCamie, 1 month ago

⇝ radius of a circle is 25 cm and the distance of its chord from the centre is 4 cm what is the length of the chord?​

Answers

Answered by BrainlyySrijan
3

Answer:

Given :-

The radius of a circle is 25 cm and the distance of its chord from the centre is 4 cm.

To Find :-

What is the length of the chord.

Solution :-

First, we have to find the perpendicular :

Given :

Radius = 25 cm [ AO ]

Distance of its chord = 4 cm [ BO ]

Now, we have to use Pythagoras Theorem :

\leadsto \sf\bold{\pink{AB =\: \sqrt{AO^2 - BO^2}}}⇝AB=AO2−BO2

\implies \sf AB =\: \sqrt{(25)^2 - (4)^2}⟹AB=(25)2−(4)2

\implies \sf AB =\: \sqrt{25 \times 25 - 4 \times 4}⟹AB=25×25−4×4

\implies \sf AB =\: \sqrt{625 - 16}⟹AB=625−16

\implies \sf AB =\: \sqrt{609}⟹AB=609

\implies \sf\bold{\purple{AB =\: 24.67\: cm}}⟹AB=24.67cm

Now, we have to find the length of the chord :

\longrightarrow \sf Length_{(Chord)} =\: 2 \times 24.67⟶Length(Chord)=2×24.67

\longrightarrow \sf Length_{(Chord)} =\: 2 \times \dfrac{2467}{100}⟶Length(Chord)=2×1002467

\longrightarrow \sf Length_{(Chord)} =\: \dfrac{4934}{100}⟶Length(Chord)=1004934

\longrightarrow \sf\bold{\red{Length_{(Chord)} =\: 49.34\: cm}}⟶Length(Chord)=49.34cm

{\small{\bold{\underline{\therefore\: The\: length\: of\: the\: chord\: is\: 49.34\: cm\: .}}}}∴Thelengthofthechordis49.34cm.

Answered by BrainlSrijan1
3

Answer:

Given :-

The radius of a circle is 25 cm and the distance of its chord from the centre is 4 cm.

To Find :-

What is the length of the chord.

Solution :-

First, we have to find the perpendicular :

Given :

Radius = 25 cm [ AO ]

Distance of its chord = 4 cm [ BO ]

Now, we have to use Pythagoras Theorem :

\leadsto \sf\bold{\pink{AB =\: \sqrt{AO^2 - BO^2}}}⇝AB=AO2−BO2

\implies \sf AB =\: \sqrt{(25)^2 - (4)^2}⟹AB=(25)2−(4)2

\implies \sf AB =\: \sqrt{25 \times 25 - 4 \times 4}⟹AB=25×25−4×4

\implies \sf AB =\: \sqrt{625 - 16}⟹AB=625−16

\implies \sf AB =\: \sqrt{609}⟹AB=609

\implies \sf\bold{\purple{AB =\: 24.67\: cm}}⟹AB=24.67cm

Now, we have to find the length of the chord :

\longrightarrow \sf Length_{(Chord)} =\: 2 \times 24.67⟶Length(Chord)=2×24.67

\longrightarrow \sf Length_{(Chord)} =\: 2 \times \dfrac{2467}{100}⟶Length(Chord)=2×1002467

\longrightarrow \sf Length_{(Chord)} =\: \dfrac{4934}{100}⟶Length(Chord)=1004934

\longrightarrow \sf\bold{\red{Length_{(Chord)} =\: 49.34\: cm}}⟶Length(Chord)=49.34cm

{\small{\bold{\underline{\therefore\: The\: length\: of\: the\: chord\: is\: 49.34\: cm\: .}}}}∴Thelengthofthechordis49.34cm.

Similar questions