⇝ radius of a circle is 25 cm and the distance of its chord from the centre is 4 cm what is the length of the chord?
Answers
Answer:
Given :-
The radius of a circle is 25 cm and the distance of its chord from the centre is 4 cm.
To Find :-
What is the length of the chord.
Solution :-
First, we have to find the perpendicular :
Given :
Radius = 25 cm [ AO ]
Distance of its chord = 4 cm [ BO ]
Now, we have to use Pythagoras Theorem :
\leadsto \sf\bold{\pink{AB =\: \sqrt{AO^2 - BO^2}}}⇝AB=AO2−BO2
\implies \sf AB =\: \sqrt{(25)^2 - (4)^2}⟹AB=(25)2−(4)2
\implies \sf AB =\: \sqrt{25 \times 25 - 4 \times 4}⟹AB=25×25−4×4
\implies \sf AB =\: \sqrt{625 - 16}⟹AB=625−16
\implies \sf AB =\: \sqrt{609}⟹AB=609
\implies \sf\bold{\purple{AB =\: 24.67\: cm}}⟹AB=24.67cm
Now, we have to find the length of the chord :
\longrightarrow \sf Length_{(Chord)} =\: 2 \times 24.67⟶Length(Chord)=2×24.67
\longrightarrow \sf Length_{(Chord)} =\: 2 \times \dfrac{2467}{100}⟶Length(Chord)=2×1002467
\longrightarrow \sf Length_{(Chord)} =\: \dfrac{4934}{100}⟶Length(Chord)=1004934
\longrightarrow \sf\bold{\red{Length_{(Chord)} =\: 49.34\: cm}}⟶Length(Chord)=49.34cm
{\small{\bold{\underline{\therefore\: The\: length\: of\: the\: chord\: is\: 49.34\: cm\: .}}}}∴Thelengthofthechordis49.34cm.
Answer:
Given :-
The radius of a circle is 25 cm and the distance of its chord from the centre is 4 cm.
To Find :-
What is the length of the chord.
Solution :-
First, we have to find the perpendicular :
Given :
Radius = 25 cm [ AO ]
Distance of its chord = 4 cm [ BO ]
Now, we have to use Pythagoras Theorem :
\leadsto \sf\bold{\pink{AB =\: \sqrt{AO^2 - BO^2}}}⇝AB=AO2−BO2
\implies \sf AB =\: \sqrt{(25)^2 - (4)^2}⟹AB=(25)2−(4)2
\implies \sf AB =\: \sqrt{25 \times 25 - 4 \times 4}⟹AB=25×25−4×4
\implies \sf AB =\: \sqrt{625 - 16}⟹AB=625−16
\implies \sf AB =\: \sqrt{609}⟹AB=609
\implies \sf\bold{\purple{AB =\: 24.67\: cm}}⟹AB=24.67cm
Now, we have to find the length of the chord :
\longrightarrow \sf Length_{(Chord)} =\: 2 \times 24.67⟶Length(Chord)=2×24.67
\longrightarrow \sf Length_{(Chord)} =\: 2 \times \dfrac{2467}{100}⟶Length(Chord)=2×1002467
\longrightarrow \sf Length_{(Chord)} =\: \dfrac{4934}{100}⟶Length(Chord)=1004934
\longrightarrow \sf\bold{\red{Length_{(Chord)} =\: 49.34\: cm}}⟶Length(Chord)=49.34cm
{\small{\bold{\underline{\therefore\: The\: length\: of\: the\: chord\: is\: 49.34\: cm\: .}}}}∴Thelengthofthechordis49.34cm.