Math, asked by karan6528, 4 months ago

radius of a circle is 34 cm and the distance of the chord from the centre is 30 cm, find the length of the chord.​

Answers

Answered by sonirekha614
1

Answer:

3 cmjgjvh bhghgfgufggggggfdhh

Answered by suraj5070
185

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt Radius\: of \:a \:circle \:is\: 34 \:cm\: and\: the\: distance\\\tt of\: the \:chord \:from\: the\: centre\: is\: 30 \:cm, \:find \:the\:\\\tt length\: of \:the \:chord.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf O \:is\:the \:centre \:of \:the \:circle
  •  \sf \bf Radius \:of\:the\:circle\Big(OA \:and \:OB\Big) =34 \:cm
  •  \sf \bf Distance \:of\:chord \:from \:the \:centre\Big(OC\Big) =30 \:cm
  •  \sf \bf OC \perp AB

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Length \:of \:the \:chord

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 \sf \bf In \triangle OCA

 \sf \bf \angle C={90}^{\circ}

 {\underbrace {\overbrace {\color {orange} {\tt By\: pythagoras \:theorem}}}}

 \sf \bf \implies {OA}^{2}={AC}^{2}+{CO}^{2}

 \sf \bf \implies {\Big(34\Big)}^{2}={AC}^{2}+{\Big(30\Big)}^{2}

 \sf \bf \implies 1156={AC}^{2}+900

 \sf \bf \implies {AC}^{2}=1156-900

 \sf \bf \implies {AC}^{2}=256

 \sf \bf \implies AC=\sqrt{256}

 \implies {\boxed {\color{green} {\sf \bf AC=16\:cm}}}

 \\

 \sf \bf In \triangle OCB

 \sf \bf \angle C={90}^{\circ}

 {\underbrace {\overbrace {\color {orange} {\tt By\: pythagoras \:theorem}}}}

 \sf \bf \implies {OB}^{2}={BC}^{2}+{CO}^{2}

 \sf \bf \implies {\Big(34\Big)}^{2}={AC}^{2}+{\Big(30\Big)}^{2}

 \sf \bf \implies 1156={BC}^{2}+900

 \sf \bf \implies {BC}^{2}=1156-900

 \sf \bf \implies {BC}^{2}=256

 \sf \bf \implies BC=\sqrt{256}

 \implies {\boxed {\color{green} {\sf \bf BC=16\:cm}}}

------------------------------------------------------------

 \sf \bf \implies AB=AC+BC

 \sf \bf \implies AB=16+16

 \implies {\boxed{\boxed {\color{blue} {\sf \bf AB=32\:cm}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf\huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf \bf Circumference \:of \:the \:circle =2\pi{r}^{2}

 \sf \bf Area \:of \:the \:circle =\pi{r}^{2}

 \sf \bf Diameter\:of \:the \:circle =2r

Similar questions