Science, asked by samyakdholane3, 2 months ago

Radius of a circle with centre 0is10cm . Find the length of the chord if the chord is at a distance of 6cm from the centre​

Answers

Answered by pandaXop
38

Chord = 16 cm

Explanation:

Given:

  • Length of radius of circle is 10 cm.
  • Distance of chord from the centre is 6 cm.

To Find:

  • What is the length of the chord ?

Solution: Let in the circle with centre O and in ∆OBA we have

  • OA = 10 cm , Radius {hypotenuse}

  • OB = 6 cm {perpendicular}

  • AB = Half chord {base}

  • AC = Chord

  • ∠OBA = 90°

In ∆OBA , applying Pythagoras Theorem

Pythagoras Theorem : = +

\implies{\rm } OA² = OB² + AB²

\implies{\rm } 10² = 6² + AB²

\implies{\rm } 100 36 = AB²

\implies{\rm } 64 = AB

\implies{\rm } 8 = AB

So the length of AB i.e half chord is 8 cm therefore ,

➯ AC = 2 × 8

➯ AC = 16 cm

Hence, the length of the chord of the circle is 16 cm

Attachments:
Answered by BrainlyRish
32

Given : O is the centers of Circle , Radius of circle is of 10 cm & the chord is at a distance of 6cm from the centre [O] .

Exigency To Find : The Length of the chord .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's say that Chord of circle be AB , The Distance from the Radius of the circle be ON & Radius of the circle be OA .

⠀⠀⠀⠀⠀⠀As , We can see that it is forming Right angled triangle [ \triangle ONA ] :

⠀⠀⠀⠀Here ,

⠀⠀⠀▪︎⠀AN is the half chord of circle [ Base ]

⠀⠀⠀▪︎⠀ON is the radius of circle [ Perpendicular ]

⠀⠀⠀▪︎⠀OA is the Distance from center to chord of circle [ Hypotenuse ]

⠀⠀⠀▪︎⠀\angle ONA is 90⁰ [ Right angled triangle ]

[ Kindly Refer to given attachment ( image ) ]

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad\bigstar\:\:\bf By\:Pythagoras\:Theorem\::\\\\

\qquad \dag\:\:\bigg\lgroup \sf{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2 }\bigg\rgroup \\\\

⠀⠀⠀Now ,

⠀⠀In \triangle ONA :

\qquad:\implies \sf \:(OA)^2 \: = \: (AN)^2 \: + \: (OA)^2 \:\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf \:(OA)^2 \: = \: (AN)^2 \: + \: (OA)^2 \:\\

\qquad:\implies \sf \:(10)^2 \: = \: (AN)^2 \: + \: (6)^2 \:\\

\qquad:\implies \sf \:100 \: = \: (AN)^2 \: + \: (6)^2 \:\\

\qquad:\implies \sf \:100 \: = \: (AN)^2 \: + \: 36 \:\\

\qquad:\implies \sf \:(AN)^2 \: = \: 100 - \: 36 \:\\

\qquad:\implies \sf \:(AN)^2 \: = \: 64 \:\\

\qquad:\implies \sf \:AN \: = \: \sqrt {64} \:\\

\qquad:\implies \bf \:AN\: = \: 8\:\\

\qquad:\implies \frak{\underline{\purple{\:AN\: = 8\:cm\: }} }\:\:\bigstar \\

Therefore,

⠀⠀⠀▪︎⠀AN is the half of AB

\qquad:\implies \sf\dfrac{1}{2} \:of\: AB =  A N \:\\

\qquad:\implies \sf\dfrac{1}{2} \:of\: AB =  8 \:\\

\qquad:\implies \sf\dfrac{1}{2} \:\times\: AB =  8 \:\\

\qquad:\implies \sf\: AB =  8\times 2 \:\\

\qquad:\implies \bf\: AB =  16 \:\\

\qquad:\implies \frak{\underline{\purple{\:AB\: = 16\:cm\: }} }\:\:\bigstar \\

Therefore ,

⠀⠀⠀▪︎⠀AB is the chord of the circle is 16 cm .

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Chord \:\:[\ A B\ ]\:of\:Circle \:is\:\bf{16\:cm}}}}\\

Attachments:
Similar questions