Math, asked by sonnali7007, 16 days ago

radius of a right circular cylinder is increased by 15 percent and it's height decreased by 20 percent then by what percent sell the volume of the cylinder change

Answers

Answered by mathdude500
3

Appropriate Question :-

If the radius of a right circular cylinder is increased by 15 percent and it's height is decreased by 20 percent, then by what percent the volume of the cylinder change?

\large\underline{\sf{Solution-}}

Let assume that

  • Radius of cylinder = r units

  • Height of cylinder = h units

We know,

Volume of cylinder of radius r and height h is given by

\rm \: Volume_{(Cylinder)} = \pi \:  {r}^{2} h \:  \cdots \cdots(1) \\

Now, According to statement

Radius is increased by 15 % and height is decreased by 20%.

So, New dimensions are

\rm \: R = r + 15\% \: of \: r \\

\rm \:  = r +  \frac{15}{100}  \:  \times  \: r \\

\rm \:  = r +  \frac{3r}{20}  \\

\rm \:  = \frac{20r + 3r}{20}  \\

\rm \:  = \frac{23r}{20}  \\

Now,

\rm \: H = h - 20\% \: of \: h \\

\rm \: H = h -  \frac{20}{100}  \times  h \\

\rm \: H = h -  \frac{h}{5} \\

\rm \: H = \frac{5h - h}{5} \\

\rm \: H = \frac{4h}{5} \\

Now, Volume of cylinder is given by

\rm \: Volume_{(Cylinder)}' = \pi \:  {R}^{2} H

\rm \:  =  \: \pi \:  {\bigg[\dfrac{23r}{20} \bigg]}^{2}  \times \dfrac{4h}{5}  \\

\rm \:  =  \: \pi \:   \times \dfrac{529 {r}^{2} }{400}   \times \dfrac{4h}{5}  \\

\rm \:  =  \:\dfrac{529}{500}  \pi \:  {r}^{2} h

\rm\implies \:Volume_{(Cylinder)}'  =  \:\dfrac{529}{500}  \pi \:  {r}^{2} h \\

Now,

\rm \: \% \: age \: change \: in \: Volume_{(Cylinder)} \\

\rm \:  =  \: \dfrac{Volume_{(Cylinder)}' - Volume_{(Cylinder)}}{Volume_{(Cylinder)}}  \times 100\%

\rm \:  =  \: \dfrac{\dfrac{529}{500}\pi \:  {r}^{2} h - \pi \:  {r}^{2} h }{\pi \:  {r}^{2} h}  \times 100\% \\

\rm \:  =  \: \dfrac{\bigg(\dfrac{529}{500}- 1\bigg)\pi \:  {r}^{2} h }{\pi \:  {r}^{2} h}  \times 100\% \\

\rm \:  =  \: \bigg(\dfrac{529 - 500}{500}  \bigg)  \times 100\% \\

\rm \:  =  \: 5.8\: \% \:  \\

Hence,

\red{\rm\implies \% \: age \: change \: in \: Volume_{(Cylinder)} =  5.8\%} \:  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions