Math, asked by cnargis289, 9 months ago

radius of a spherical ballon is increasing with time as 2/pie then the rate of the change in the volume of balloons when radius is 0.5 is​

Attachments:

Answers

Answered by shadowsabers03
8

Volume of the spherical balloon is given by,

\sf{\longrightarrow V=\dfrac{4}{3}\,\pi r^3}

Then rate of change of volume will be,

\sf{\longrightarrow \dfrac{dV}{dt}=\dfrac{d}{dt}\left(\dfrac{4}{3}\,\pi r^3\right)}

\sf{\longrightarrow \dfrac{dV}{dt}=\dfrac{4}{3}\,\pi \cdot\dfrac{d}{dt}\left(r^3\right)}

\sf{\longrightarrow \dfrac{dV}{dt}=\dfrac{4}{3}\,\pi \cdot\dfrac{d}{dr}\left(r^3\right)\cdot\dfrac{dr}{dt}}

\sf{\longrightarrow \dfrac{dV}{dt}=\dfrac{4}{3}\,\pi \cdot3r^2\cdot\dfrac{dr}{dt}}

\sf{\longrightarrow \dfrac{dV}{dt}=4\pi r^2\cdot\dfrac{dr}{dt}\quad\quad\dots(1)}

Here rate of change of radius is given as,

\sf{\longrightarrow \dfrac{dr}{dt}=\dfrac{2}{\pi}\ m\,s^{-1}}

Then (1) becomes,

\sf{\longrightarrow \dfrac{dV}{dt}=4\pi r^2\cdot\dfrac{2}{\pi}}

\sf{\longrightarrow \dfrac{dV}{dt}=8r^2}

At \sf{r=0.5\ m,}

\sf{\longrightarrow \dfrac{dV}{dt}=8(0.5)^2}

\sf{\longrightarrow\underline{\underline{\dfrac{dV}{dt}=2\ m^3\,s^{-1}}}}

Hence (3) is the answer.


amitkumar44481: Great :-)
Similar questions