Physics, asked by aneelkumarnand584, 11 months ago

Radius of a spherical conductor is 2m, This is kept in dielectric medium of dielectric constant 10^6N//C. Find a. capacitance of the conductor b. maximum charge which can be stored on this conductor.

Answers

Answered by roshinik1219
3

Given:

  • Radius of a spherical conductor(R) = 2m
  • Dielectric constant= 10^6N / C

To Find:  

            (a) Capacitance of the conductor

            (b) maximum charge which can be stored on this conductor.

Solution:

(a) Capacitance of the conductor  is given by

                                C =\frac{R}{k}

Putting the values,

                         C =\frac{1}{9 \times 10^9}  (2)

                         C = \frac{2}{9}  \times 10^{-9}

                         C = 2.22 \times 10^{-8} F

(b) Maximum electric field on the surface of spherical conductor is

                               E = \frac{kq}{R^2}

                              E_(max) = \frac{kq}{R^2}

   This should not exceed 10^6 N/C

                         E_(max) = \frac{kq_(max)}{R^2}   = 10^6 N/C

                       q_(max) =(4\pi  \epsilon_0) R^2(10^6)

                                    =(\frac{1}{9 \times 10^9} )(2^2) (10^6)

                        q_(max) =4.4\times 10^{-4} C

Thus, Maximum charge which can be stored on this conductor is q_(max) =4.4\times 10^{-4} C

Similar questions