Math, asked by PatilDiksha, 1 year ago

Radius of base of a cylinder is 20cm and its height is 13cm ,find its curved surface area and total surface area (=22÷7

Answers

Answered by Anonymous
146

\bold{\sf{\underline{\underline{\huge{AnsWer:}}}}}

Curved surface area = 1634.28 cm²

Total surface area = 4148.57 cm²

\bold{\sf{\underline{\underline{\large{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • Radius of base of a cylinder is 20 cm
  • Height of the cylinder is 13 cm
  • \pi = \sf{\dfrac{22}{7}}

To FiNd :

  • Curved surface area
  • Total surface area

SoLuTiOn :

So to calculate the curved surface area, we have the formula :

\bold{\large{\boxed{\green{\tt{Cured\:surface\:area\:of\:cylinder\:=\:2\:\pi\:r\:h}}}}}

Where,

  • r = radius = 20 cm
  • h = height = 13 cm

Block in the values,

\longrightarrow \rm{2\:\times\:{\dfrac{22}{7}\:\times\:20\:\times\:13}}

\longrightarrow \sf{\dfrac{44\:\times\:20\:\times\:13}{7}}

\longrightarrow \sf{\dfrac{880\:\times\:13}{7}}

\longrightarrow \sf{\dfrac{11440}{7}}

\longrightarrow \sf{1634.28\:sq.cm}

\sf{\therefore{Curved\:surface\:area\:of\:cylinder\:=\:1634.28\:cm^2}}

ToTaL sUrFaCe ArEa :

We have the formula,

\bold{\large{\boxed{\pink{\sf{Total\:surface\:area\:of\:cylinder\:=\:2\:\pi\:r\:(r\:+\:h)}}}}}

Block in the values,

\longrightarrow \sf{2\:\times\:{\dfrac{22}{7}\:20\:(20\:+\:13)}}

\longrightarrow \sf{\dfrac{44\:\times\:20\:\times\:33}{7}}

\longrightarrow \sf{\dfrac{29040}{7}}

\longrightarrow \sf{4148.57\:sq.cm}

\sf{\therefore{Total\:surface\:area\:of\:cylinder\:=\:4148.57\:cm^2}}

Answered by Anonymous
17

SOLUTION:-

Given:

The radius of base of a cylinder is 20cm & it's height of a cylinder is 13cm.

To find:

•Its curved surface area of cylinder &

•Total surface area of cylinder.

Explanation:

Formula: Curved surface area of cylinder

Formula: 2πrh

We have,

  • Height of the cylinder,h=13cm
  • Radius of the cylinder,r= 20cm

 =  > (2 \times  \frac{22}{7}  \times 20 \times 13) {cm}^{2}  \\  \\  =  >  (\frac{44}{7}  \times 260) {cm}^{2}  \\  \\   =  > ( \frac{11440}{7} ) {cm}^{2}  \\  \\  =  > 1634.28 {cm}^{2}

&

Formula: Total surface area of the cylinder

Formula: 2πr² + 2πrh

Therefore,

 =  > 2 \times  \frac{22}{7}  \times 20 \times 20 + 2 \times  \frac{22}{7}  \times 20 \times 13 \\  \\  =  >  \frac{44}{7}  \times 400cm +  \frac{44}{7}  \times 260cm \\  \\  =  >  \frac{17600}{7}  {cm}^{2}  \:   +  \frac{11440}{7}  {cm}^{2}  \\  \\  =  > 2514.28 {cm}^{2}   + 1634.28 {cm}^{2}  \\  \\  =  > 4148.56 {cm}^{2}

Thus,

The curved surface area of cylinder is 1634.28cm².

The total surface area of the cylinder is 4148.56cm².

Similar questions