Math, asked by riya15042006, 6 months ago

Radius of circle is 1m if diameter is increased by 100% then find the percentage increase in its area.

Dont spam..!!!​

Answers

Answered by acsahjosemon40
9

\huge\pink{\fbox{\tt{࿐αɴѕωєя࿐✨}}}

Let the diameter be 100 cm.

Let the diameter be 100 cm.New diameter = 200 cm

Let the diameter be 100 cm.New diameter = 200 cmChange in area = π(100)^2−π(50)^2

2=π(100+50)(100−50)

2=π(100+50)(100−50)=π×150×50

2=π(100+50)(100−50)=π×150×50= 7500π cm^2.

2.Percentage increase = 7500ππ×50×50×100 = 300%

Let the diameter be 100 cm.

New diameter = 200 cm

Change in area = π(100)^2−π(50)^2

=π(100+50)(100−50)

=π×150×50

= 7500πcm^2.

Percentage increase = 7500ππ×50×50×100 = 300%

..

.....

HOPE IT WOULD HELP YOU ȘİŚTA..

SARANGHAYO SISØ... ❤️

Answered by Manmohan04
1

Given,

Radius of circle, \[r = 1m\]

Increase in diameter \[=100\% \]

Solution,

Consider the diameter is d.

\[\begin{array}{l}d = 2 \times r\\ \Rightarrow d = 2 \times 1\\ \Rightarrow d = 2m\end{array}\]

Initial diameter, \[{d_1} = 2m\]

Final diameter,

\[\begin{array}{l}{d_2} = {d_1} + 100\% {d_1}\\ \Rightarrow {d_2} = 2 + \frac{{100}}{{100}} \times 2\\ \Rightarrow {d_2} = 4m\end{array}\]

Consider the area is a.

\[a = \frac{\pi }{4}{d^2}\]

\[a \propto {d^2}\]

\[\frac{{\Delta a}}{a} \times 100 = 2 \times \frac{{\Delta d}}{d} \times 100\]

\[\frac{{\Delta a}}{a} \times 100 = 2 \times \frac{{{d_2} - {d_1}}}{{{d_1}}} \times 100\]

\[\frac{{\Delta a}}{a} \times 100 = 2 \times \frac{{4 - 2}}{2} \times 100\]

\[\frac{{\Delta a}}{a} \times 100 = 2 \times 1 \times 100\]

\[\frac{{\Delta a}}{a} \times 100 = 200\% \]

Hence percentage increase in area is \[200\% \].

Similar questions