radius of circle is 34 cm and that distance of chord from the center 30 cm find the length of the chord
Answers
Answered by
12
The perpendicular drawn from the centre to the chord bisects it.
∴ AM = 1/2 AB = 1/2 × 30 cm
= 15 cm
Also, OA = 1/2 AD
= 1/2 × 34 cm
= 17 cm
In rt. △OAM, we have
OA2 = OM2 + AM2
172 = OM2 + 152
⇒ 289 = OM2 + 225
⇒ OM2 = 289 - 225
⇒ OM2 = 64
⇒ OM = √64 = 8 cm
∴ AM = 1/2 AB = 1/2 × 30 cm
= 15 cm
Also, OA = 1/2 AD
= 1/2 × 34 cm
= 17 cm
In rt. △OAM, we have
OA2 = OM2 + AM2
172 = OM2 + 152
⇒ 289 = OM2 + 225
⇒ OM2 = 289 - 225
⇒ OM2 = 64
⇒ OM = √64 = 8 cm
Similar questions