Math, asked by MaNchEstEr0, 9 months ago

Radius of circle is doubled, Then find area increased %.​

Answers

Answered by Sudhir1188
0

Answer:

300%

Step-by-step explanation:

PLEASE FIND THIS ATTACHMENT.

HOPE THIS WILL HELP U.

KEEP LEARNING AND KEEP PRACTICING

Attachments:
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Increased\%=300\%}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies  Radius \: of \: circle = r \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Area \: Increased \% = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Area \: of \: circle = \pi { r_{1} }^{2}  \\  \\ \tt:  \implies Area \: of \: circle =\pi {r}^{2}  -  -  -  -  - (1) \\  \\ \bold{As \: we \: know \: that} \\  \tt:  \implies Area \: of \: new \: circle = \pi { r_{2}}^{2}  \\  \\ \tt:  \implies Area \: of \: new \: circle =\pi {(2r)}^{2}  \\  \\ \tt:  \implies Area \: of \: new \: circle =4\pi  {r}^{2} -  -  -  -  - (2) \\  \\  \bold{For \: finding \: increase \: in \: area} \\  \tt:  \implies Increase \: area = 4\pi {r}^{2}  - \pi {r}^{2}  \\  \\ \tt:  \implies Increase \: area =3\pi {r}^{2}  \\  \\  \bold{For \: increase \%} \\  \tt:  \implies Increase \% =  \frac{Increased \: area}{Actual \: area} \times 100  \\  \\  \tt:  \implies Increase \% =  \frac{3\pi {r}^{2} }{\pi {r}^{2} }  \times 100 \\  \\    \green{\tt:  \implies Increase \% = 300\%}

Similar questions