radius of circular base of an ear of corn is 6.6 cm and its length is 11.2 cm if on an average 1 sq.cm area contains 2 corn kernels find the total number of kernels on a corn.
Answers
Answered by
536
Hello Mate!
Curved surface area of corn = πrl
Now, l = √( r² + h² )
= √( 6.6² + 11.2² )
= √( 43.56 + 125.44 )
= √169 = 13 cm
So, curved surface area = 22/7 × 6.6 × 13 cm²
= 269.7 cm²
Now, when 1 cm² covers = 2 kernels
Then 269.7 cm² will cover = 269.7 × 2 = 539.4 kernels
Hence, 539 kernels ( approx. ) will be in the corn.
Have great future ahead!
Curved surface area of corn = πrl
Now, l = √( r² + h² )
= √( 6.6² + 11.2² )
= √( 43.56 + 125.44 )
= √169 = 13 cm
So, curved surface area = 22/7 × 6.6 × 13 cm²
= 269.7 cm²
Now, when 1 cm² covers = 2 kernels
Then 269.7 cm² will cover = 269.7 × 2 = 539.4 kernels
Hence, 539 kernels ( approx. ) will be in the corn.
Have great future ahead!
gaurav999979:
Thank you sir for these answer . This question is asked in Board examination
Answered by
151
हल -
दिया है -
शंकु की ऊंचाई h = 11.2
त्रिज्या r = 6.6
अतः तिर्यक् ऊँचाई l = √(r² + h²)
शंकु का वक्र पृष्ठ = πrl
जब 1cm² = 2 kernels को ढक लेता है तो,
269.7cm² ढकेगा 539.4 kernels को
दिया है -
शंकु की ऊंचाई h = 11.2
त्रिज्या r = 6.6
अतः तिर्यक् ऊँचाई l = √(r² + h²)
शंकु का वक्र पृष्ठ = πrl
जब 1cm² = 2 kernels को ढक लेता है तो,
269.7cm² ढकेगा 539.4 kernels को
Similar questions