Math, asked by rahulbhargav1576, 1 year ago

Radius of curvature of a curve y=f(x)

Answers

Answered by vishal953725
0

Answer:

inverse of the curvature

Answered by pulakmath007
0

For a curve y = f(x) the radius of curvature is

 = \displaystyle \sf{ \frac{ { \bigg[ 1+ \bigg( { \frac{dy}{dx} \bigg)}^{2} \bigg] }^{ \frac{3}{2} } }{ \big| \: \frac{ {d}^{2}y }{d {x}^{2} } \big| } \: }

Given :

A curve y = f(x)

To find :

The radius of curvature

Solution :

Step 1 of 2 :

Write down radius of curvature of y = f(x)

For a curve y = f(x) the radius of curvature is

 = \displaystyle \sf{ \frac{ { \bigg[ 1+ \bigg( { \frac{dy}{dx} \bigg)}^{2} \bigg] }^{ \frac{3}{2} } }{ \big| \: \frac{ {d}^{2}y }{d {x}^{2} } \big| } \: }

Step 2 of 2 :

Provide an example

Let us consider the curve y = log sin x

We will find the radius of curvature of  \displaystyle \: \sf{y = \log \sin x \: \: \: \: at \: \: \: x = \frac{\pi}{2} \: }

 \displaystyle \: \sf{y = \log \sin x \: \: \: \: \: }

Differentiating both sides with respect to x two times we get

 \displaystyle \: \sf{ \frac{dy}{dx} = \frac{ \cos x}{ \sin x} = \cot x \: \: \: }

 \displaystyle \: \sf{ \frac{ {d}^{2}y }{d {x}^{2} } = - { \cosec}^{2} x \: }

Now

 \displaystyle \: \sf{ At\: x = \frac{\pi}{2} \: \: \: we \: have \: \frac{dy}{dx} = \cot \frac{\pi}{2} \: = 0\: \: }

 \displaystyle \: \sf{ At\: x = \frac{\pi}{2} \: \: we \: \: have \: \: \frac{ {d}^{2}y }{d {x}^{2} } = - { \cosec}^{2} \frac{\pi}{2} = - 1 \: }

Hence the required radius of curvature

 = \displaystyle \sf{ \frac{ { \bigg[ 1+ \bigg( { \frac{dy}{dx} \bigg)}^{2} \bigg] }^{ \frac{3}{2} } }{ \big| \: \frac{ {d}^{2}y }{d {x}^{2} } \big| } \: }

 = \displaystyle \sf{ \frac{ { \bigg[ 1+ 0 \bigg] }^{ \frac{3}{2} } }{ \big| \: - 1 \: \big| } \: }

 = \displaystyle \sf{ \frac{1}{1} }

 = \displaystyle \sf{ 1}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the radius of curvature for the curve xy3=a4 at (a,a)

https://brainly.in/question/22270223

2. Find the radius of curvature of

https://brainly.in/question/23665190

Similar questions