Math, asked by surajtile7, 6 months ago

Radius of curvature of curve y=x^3 at point (1.1)

Answers

Answered by MaheswariS
12

\textbf{Given:}

\textsf{Curve is}\;\mathsf{y=x^3}

\textbf{To find:}

\textsf{Radius of curvature of the given curve}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{y=x^3}

\mathsf{\dfrac{dy}{dx}=3x^2}

\mathsf{\dfrac{d^2y}{dx^2}=6x}

\mathsf{At\;(1,1),}

\mathsf{\dfrac{dy}{dx}=3(1)^2=3}

\mathsf{\dfrac{d^2y}{dx^2}=6(1)=6}

\underline{\textsf{Radius of curvature}}

\boxed{\mathsf{R=\dfrac{\left(1+\left(\dfrac{dy}{dx}\right)^2\right)^\frac{3}{2}}{\left|\dfrac{d^2y}{dx^2}\right|}}}

\implies\mathsf{R=\dfrac{(1+3^2)^\frac{3}{2}}{|6|}}

\implies\mathsf{R=\dfrac{(1+9)^\frac{3}{2}}{6}}

\implies\mathsf{R=\dfrac{10^\frac{3}{2}}{6}}

\implies\mathsf{R=\dfrac{10\sqrt{10}}{6}}

\implies\boxed{\mathsf{R=\dfrac{5\sqrt{10}}{3}}}

\textbf{Answer:}

\mathsf{Radius\;of\;curvature\;of\;the\;given\;curve\;at\;(1,1)\;is\;\dfrac{5\sqrt{10}}{3}}}

Answered by tejasware8
5

Answer:

5.27 ( 100% Right Answer )

Similar questions