Math, asked by suhas636193, 5 months ago

radius of curvature of x2-y2=a2​

Answers

Answered by geetanshmittal57
1

r=a

d=a/2

Step-by-step explanation:

x²-y³=a²

x²-y³=r²

r²=a²

r=a

r=2d

2d=a

d=a/2

Answered by jitumahi435
2

We need to recall the following formula for the radius of curvature.

  • R=\frac{(1+(\frac{dy}{dx})^2 )^{3/2}}{|\frac{d^2y}{dx^2} |}

Given:

x^{2} -y^2=a^2

y^2=x^2-a^2

y=\sqrt{x^2-a^2}

Differentiate w.r.t. x , we get

\frac{dy}{dx}=\frac{x}{\sqrt{x^2-a^2}}

Again differentiate w.r.t. x , we get

\frac{d^2y}{dx^2}=-\frac{a^{2} }{(x^2-a^2)^{3/2}}

From the formula of a radius of curvature, we get

R=\frac{(1+(\frac{x}{\sqrt{x^2-a^2} })^2 )^{3/2}}{|-\frac{a^2}{(x^2-a^2)^{3/2}} |}

R=\frac{(1+(\frac{x}{\sqrt{x^2-a^2} })^2 )^{3/2}}{\frac{a^2}{(x^2-a^2)^{3/2}} }

R=\frac{(1+\frac{x^2}{x^2-a^2})^{3/2}}{\frac{a^2}{(x^2-a^2)^{3/2}} }

R=\frac{(\frac{x^2-a^2+x^2}{x^2-a^2})^{3/2}}{\frac{a^2}{(x^2-a^2)^{3/2}} }

R=\frac{\frac{(2x^2-a^2)^{3/2}}{(x^2-a^2)^{3/2}}}{\frac{a^2}{(x^2-a^2)^{3/2}} }

R={\frac{(2x^2-a^2)^{3/2}}{a^2}}

Hence, the radius of curvature of x^{2} -y^2=a^2 is {\frac{(2x^2-a^2)^{3/2}}{a^2}}.

Similar questions