Math, asked by sonikishan95372, 3 months ago

radius of curvature
 {x}^{2} -  {y}^{2}   =  {a}^{2}

Answers

Answered by assingh
24

Topic :-

Radius of Curvature

Given :-

\mathrm {x^2-y^2=a^2}

To Find :-

Radius of Curvature of given equation.

Formula to be Used :-

The formula for the radius of curvature at any point x for the curve y = f(x) is given by:

\mathrm{R=\left | \dfrac{(1+(y')^2)^{3/2}}{y''}  \right | }

where,

\mathrm{y'=\dfrac{dy}{dx} \:\: and}

\mathrm{y''=\dfrac{d^2y}{dx^2}}

Solution :-

We will calculate value of y' and y'' for given function and then put the values in the formula.

Calculating y' and y'',

\mathrm {x^2-y^2=a^2}

Differentiate it,

\mathrm {\dfrac{d(x^2)}{dx}-\dfrac{d(y^2)}{dx}=\dfrac{d(a^2)}{dx}}

\mathrm {2x-2y\dfrac{dy}{dx}=0}

\mathrm {2x-2yy'=0}

\mathrm {yy'=x}

\mathrm {y'=\dfrac{x}{y}}

Again differentiate it,

\mathrm {y''=\dfrac{1}{y}}

Now, put values in formula,

\mathrm{R=\left | \dfrac{(1+(x/y)^2)^{3/2}}{1/y}  \right | }

\mathrm{R=\left | y(1+(x/y)^2)^{3/2}  \right | }

Answer :-

So, Radius of Curvature of given curve is

\mathrm{R=\left | y(1+(x/y)^2)^{3/2}  \right | }

Similar questions