Math, asked by akshita6772, 1 year ago

Rahul deposited a sum of rupees 8000 at compound interest in the bank at the rate of 18% per annum for 3 years. what interest will he get after the end of 3 years​

Answers

Answered by Anonymous
110

Rahul deposited a sum of rupees 8000 at compound interest in the bank at the rate of 18% per annum for 3 years.

Here -

  • Principle (P) = Rs. 8000

  • Rate (R) = 18%

  • Time (t) = 3 years

We know that..

\sf{A\:=\:P\:(1\:+\:\frac{R}{100})^t}

Substitute the known values above

=> \sf{A\:=\:8000\:(1\:+\:\frac{18}{100})^3}

=> \sf{A\:=\:8000\:(\frac{100\:+\:18}{100})^3}

=> \sf{A\:=\:800\:(\frac{118}{100})^3}

=> \sf{A\:=\:800\:\times\:\frac{118}{100}\:\times\:\frac{118}{100}\:\times\:\frac{118}{100}}

=> \sf{A\:=\:8000\:\times\:1.18\:\times\:1.18\:\times\:1.18}

=> \sf{A\:=\:8000\:\times\:1.64303}

=> \sf{A\:=\:Rs.\:13144.24}

So,

Total interest in 3 years = Rs. 13144.24 - Rs. 8000

=> Rs. 5144.24

Answered by StyIish01
53

{\boxed{\tt{Given\::-}}}

Here P = Rs 8000, R = 5% Per annum

and, n = 3.

Amount after 3 Year

{\boxed{\tt{Formula\:Applied:\:-}}}

A = P(1 +  \frac{R}{100} ) ^{t}

⇒ P {(1  +  \frac{R}{100}) }^{n}

⇒8000(1 +  \frac{18}{100})^{3}

⇒8000 ( \frac{100 + 18}{100} )^{3}

⇒8000 (  \frac{118}{100} ) ^{3}

⇒ \: 8000( \frac{118}{100}  \times  \frac{118}{100}  \times \frac{118}{100} )

⇒8000 \:  \: (1.18 \times 1.18 \times 1.18)

⇒ \: 8000 \: (1.643032)

⇒ \: 13144.25

Now, The Total interest in Total 3 Years = A—P

i.e., 13144.2—8000 = ₹5144.256

Similar questions