Math, asked by SidhiSareen, 9 months ago

Rahul deposited rs.15000 in a bank for 2 and a half years. Find the amount he will receive if it is compounded annually at a rate of 8% per annum

Answers

Answered by Truebrainlian9899
36

Given :

  • Principle = rs. 15000

  • time = 2.5years or 2 and a half years

  • Rate of interest = 8%

 \large \red{ \underline{ \underline{ \green{ \rm \: solution : }}}}

 \orange{ \boxed{ \boxed{ \purple{ \rm \: amount =  \frac{p (1 + r) {}^{t} }{100} }}}}

 \implies \rm  {15000 (1 +   \dfrac{r}{100})  {}^{2.5}  }

 \implies \: 1500(1 +  \dfrac{2}{25} ) {}^{2.5}

 \implies \:  \red{1500 ( \dfrac{25 + 2}{25} ) {}^{2.5} }

 \implies \: 1500( \dfrac{27}{25} ) {}^{2.5}

 \implies \:  \pink{15000 \times  \dfrac{27}{25}  \times   \dfrac{27}{25}  \times   \sqrt{ \dfrac{27}{25} } }

 \implies \: 24 \times 27 \times 27 \times  \dfrac{3 \sqrt{3} }{5}

  \therefore \: \blue{ \boxed{ \boxed{ \green{ \rm amount = rs. \: 18182.38}}}}

Answered by Rathishabh
5

Answer:

compound interest = P(1+rate/100)^2

15000(1+8/100)^2

15000*108/100*108/100=15*108*54

CI for two years

for half year

15*108*54*8*1/2*100(simple interest)

87,480*8/200=

3,499.2

CI+simple I=87480+3499=

90,979

Similar questions