Physics, asked by Anonymous, 23 days ago

Rahul travels at a speed of 30km/h while going to school. While coming back, he travels at a speed of 40km/h (due to less traffic). What is his average speed?

- Don't spam ^^" ​

Answers

Answered by pamechanisha
0

Answer:

the average speed is 35km/h

Answered by Anonymous
15

Answer:

  • Speed (v₁) = 30 km/h
  • Speed (v₂) = 40 km/h

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{Total  \: Distance }{Total  \: time }  \\

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ x_{1} + x_{2} }{t_{1} +t_{2} }  \\

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ x_{1} + x_{2} }{ \frac{x_{1}}{v_{1}} +  \frac{x_{2}}{v_{2}}   } \\

Distance travelled while going to school and while comming back will be same.

  • x = x₁ = x₂

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ 2x }{ \frac{x}{v_{1}} +  \frac{x}{v_{2}}   } \\

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ 2 }{ \frac{1}{v_{1}} +  \frac{1}{v_{2}}   } \\

\footnotesize\implies\:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ 2 }{ \frac{v_{1} + v_{2}}{v_{1}.v_{2}}   } \\

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ 2 v_{1}v_{2}}{ v_{1} + v_{2}   } \\

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ 2  \times 30 \times 40}{ 30 + 40  } \\

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ 2  \times 30 \times 40}{ 30 + 40  } \\

\footnotesize\implies \:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ 2400}{ 70  } \\

\footnotesize\implies\:  \bigg[Speed \bigg]_{(Average)} =  \dfrac{ 240}{ 7  } \\

\footnotesize\implies \:  \underline{\boxed{\bf{\red{\bigg[Speed \bigg]_{(Average)} =  34.28  \:km/h }}}}\\

Similar questions