Math, asked by Expertgaming, 2 months ago

Rajeev deposited Rd 20,000 in a bank where compound interest is computed 6% annually .how much amount he will get at the end of the 3rd year​

Answers

Answered by SachinGupta01
19

 \bf  \underline{Given} :

 \sf  \implies  Principal = Rs. \:  20000

\sf  \implies  Rate = 6  \: \%

\sf  \implies  Time = 3  \: Years

 \bf  \underline{To \:  find} :

\sf  \implies  We \:  have \:  to \:  find \:  the \:  amount.

 \bf \underline{\underline{Solution}}

 \sf \implies  \boxed{ \pink{\sf{\: Amount = P \bigg( 1 +   \dfrac{R }{100} \bigg)^{n}}}}

 \sf  Where,

 \sf  \underline{P = Principal},  \:  \underline{R = Rate} \:  and  \: \underline{ n = Time}

 \sf  Putting \:  the \:  values,

 \sf \implies Amount = 20000 \bigg( 1 + \dfrac{6 }{100} \bigg)^{3}

 \sf \implies 20000 \bigg( 1 + \dfrac{3 }{50} \bigg)^{3}

 \sf \implies 20000 \bigg(  \dfrac{50 + 3 }{50} \bigg)^{3}

 \sf \implies 20000 \bigg(  \dfrac{53}{50} \bigg)^{3}

 \sf \implies 20000  \times   \dfrac{148877}{125000}

 \sf \implies  \dfrac{4 \times 148877}{25}

 \sf \implies  \dfrac{595508}{25}

  \red{\sf \implies  Rs.  \: 23820.32}

 \underline{ \boxed{  \pink{\sf \: Thus, amount  = Rs. \:  23820.32}}}

Answered by Anonymous
152

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Given:}}}}}}}\end{gathered}

  • \dashrightarrow{\sf{Principle = 20000}}
  •  \dashrightarrow{\sf{Rate = 6\%}}
  • \dashrightarrow\sf{Time = 3 \: years}

\begin{gathered} \\ \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{To Find :}}}}}}}\end{gathered}

  •  \dashrightarrow{\sf{Amount}}

\begin{gathered} \\ \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Using Formula :}}}}}}}\end{gathered}

{\large\dag}{\underline{\sf{\boxed{\sf{Amount = P \bigg( 1 + \dfrac{R }{100} \bigg)^{n}}}}}}

Where

  • \dashrightarrow{\sf{P = Principle}}
  • \dashrightarrow{\sf{R = Rate}}
  • \dashrightarrow{\sf{N = Time }}

\begin{gathered} \\ \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Solution:}}}}}}}\end{gathered}

\quad{: \implies{\sf{Amount = \bf{ P \bigg( 1 + \dfrac{R }{100} \bigg)^{n}}}}}

  • Substituting the values

\quad{: \implies{\sf{Amount = \bf{ 20000 \bigg( 1 + \dfrac{6 }{100} \bigg)^{3}}}}}

\quad{: \implies{\sf{Amount = \bf{ 20000 \bigg( 1 \times 100 + \dfrac{6 }{100} \bigg)^{3}}}}}

\quad{: \implies{\sf{Amount = \bf{ 20000 \bigg( \dfrac{100 + 6 }{100} \bigg)^{3}}}}}

\quad{: \implies{\sf{Amount = \bf{ 20000 \bigg( \dfrac{106}{100} \bigg)^{3}}}}}

\quad{: \implies{\sf{Amount = \bf{ 20000 \bigg( \cancel{\dfrac{106}{100}}\bigg)^{3}}}}}

\quad{: \implies{\sf{Amount = \bf{ 20000 \bigg( \dfrac{53}{50} \bigg)^{3}}}}}

\quad{: \implies{\sf{Amount = \bf{ 20000 \bigg( \dfrac{53}{50} \times \dfrac{53}{50} \times \dfrac{53}{50} \bigg)}}}}

\quad{: \implies{\sf{Amount = \bf{ 20000 \bigg( \dfrac{148877}{125000} \bigg)}}}}

\quad{: \implies{\sf{Amount = \bf{ 20000 \times \dfrac{148877}{125000}}}}}

\quad{: \implies{\sf{Amount = \bf{{\cancel{20000}} \times \dfrac{148877}{\cancel{125000}}}}}}

\quad{: \implies{\sf{Amount = \bf{{4} \times \dfrac{148877}{25}}}}}

\quad{: \implies{\sf{Amount = \bf \dfrac{595508}{25}}}}

\quad{: \implies{\sf{Amount = \bf {\cancel{\dfrac{595508}{25}}}}}}

\quad{: \implies{\sf{Amount = \bf{23820.32}}}}

\begin{gathered} \dag{\overline{\underline{\boxed{\textsf{\textbf{\color{red}{Amount = Rs.23820.32}}}}}}}\end{gathered}

 \therefore {\underline{\sf{\pmb{The \: Amount \:  is  \: Rs.23820.32}}}}

\begin{gathered} \\ \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Learn More:}}}}}}}\end{gathered}

★ Formula of Simple Interest (S.I)

\dag \boxed{\sf{S.I = \dfrac{P \times R \times T}{100}}}

★ Formula of Principle(P) if Amount and Interest given

\dag{\boxed{\sf{P=Amount - Interest}}}

★ Formula of Principle (P) if Interest,time and rate given

\dag{\boxed{\sf{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}

★ Formula of Principle (P) if amount,time and rate given

\dag{\boxed{\sf {P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}

★ Formula of Amount if Principle (P) and Interest (I) given

\dag{\boxed{\sf{Amount = Principle + Interest }}}

Similar questions